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Poor maternal condition during gestation is commonly associated with impaired fetal

growth inhumans andother animals. Althoughelevatedmaternal glucocorticoids (GCs)

are often implicated as the mechanism of intrauterine growth stunting, the direct

contribution ofmaternal GCs remains unclear because enzymatic conversion of GCs at

the placenta may limit the ability of maternal hormones to reach the fetus. Further,

because previous studies on gestational stress have often employed synthetic GCs,

which cross the placenta unobstructed, it remains unknown whether naturalistic

endogenous GC elevations will have similar effects. Here, we use an unmanipulated

colony of captive vervet monkeys (N = 18 mother–offspring dyads) to examine how

maternal condition predicts maternal gestational hormones, and how these in turn

predict neonatal body mass, especially in comparison with total prenatal hormone

exposure as measured from neonatal hair. We focused on GCs and dehydroepian-

drosterone-sulfate (DHEAS), an additional steroid suspected to influence growth. We

found that measures of poor maternal condition (low body mass and low parity) were

not associated with elevations in maternal GCs or DHEAS. Furthermore, only fetal GC

exposure predicted neonatal body mass, while neither maternal GCs, nor maternal or

fetal DHEAS, had any effect. Surprisingly, neonates exposed to higher gestational GCs

were larger, rather than smaller at birth. Taken together, these results suggest that GC

concentrations within a more naturalistic range may be positively rather than

negatively associated with neonatal body mass. Further, the effect of maternal

gestational GCs on neonatal mass may be modulated by placental control of GC

exposure.
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1 | INTRODUCTION

The maternal gestational environment is widely known to influence

offspring prenatal and postnatal development. In particular, poor

maternal condition during gestation has been linked to impaired

offspring metabolic function, altered brain development, and stunted

fetal growth in humans and nonhuman primates (Antonow-Schlorke

et al., 2011; Bai, Wong, Bauman, & Mohsin, 2002; Buss et al., 2012;

Khashan & Kenny, 2009; Mi et al., 2000). These effects are mediated

by fetal exposure to a number of hormones, including cortisol. Cortisol
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is the predominant glucocorticoid (GC) steroid hormone found in

mammals and is produced in the adrenal cortex as an end-product of

the hypothalamic–pituitary–adrenal (HPA) axis (Sapolsky, Romero, &

Munck, 2000). Although GCs are best known for their central role in

the stress response, they are also important regulators of energy and

basic metabolic processes (Sapolsky et al., 2000).

In humans, endogenous maternal cortisol production increases

during late gestation (Carr, Madden, MacDonald, & Porter, 1981), and

variation in this production has been previously associated with

maternal condition. In humans and rodents, reduced food intake and

maternal undernutrition consistently leads to elevated circulating

concentrations of maternal GCs (Seckl, 2004; Welberg & Seckl, 2008).

Because of this relationship, low parity mothers are commonly

assumed to produce higher GCs because they face the compounded

energetic costs of finishing somatic growth while simultaneously

fueling reproduction. Empirical data, however, have failed to

consistently support the proposed parity–GC relationship. While a

number of studies across multiple species have found that lower parity

females exhibit higher GCs (humans: Bleker, Roseboom, Vrijkotte,

Reynolds, & de Rooij, 2017; Vleugels, Eling, Rolland, & de Graaf, 1986;

rodents: Pawluski, Charlier, Lieblich, Hammond, & Galea, 2009;

nonhuman primates: Bales, French, Hostetler, & Dietz, 2005; Dettmer,

Rosenberg, Suomi, Meyer, & Novak, 2015; Hinde et al., 2015), other

studies have found no relationship (humans: Bolten et al., 2011;

nonhuman primates: Altmann, Lynch, Nguyen, Alberts, & Gesquiere,

2004; Kapoor, Lubach, Hedman, Ziegler, & Coe, 2014; Nguyen,

Gesquiere, Wango, Alberts, & Altmann, 2008; Starling, Charpentier,

Fitzpatrick, Scordato, & Drea, 2010; other mammals: Metrione &

Harder, 2011).

Importantly, elevated maternal gestational GCs can reach the

developing fetus by crossing the placenta (Seckl, 2001). However, the

placenta restricts the amount of GCs that reach the fetal compartment

through the actions of 11β-hydroxysteroid dehydrogenase type 2

(11β-HSD2), an enzyme which converts cortisol into the biologically

inactive cortisone, resulting in only 10–20% of maternal cortisol

reaching the fetal compartment (Murphy, Clark, Donald, Pinsky, &

Vedady, 1974). In both humans and nonhuman primates, placental

11β-HSD2 activity increases in parallel with maternal GCs across

gestation, potentially neutralizing the effects of increasing maternal

GCs (Pepe, Babischkin, Burch, Leavitt, & Albrecht, 1996; Schoof et al.,

2001). By limiting the passage of maternal cortisol, placental 11β-

HSD2 can prevent two potentially detrimental processes: maternally

induced down-regulation of GC production by the fetal adrenal, which

can result in impaired organ growth and maturation (Campbell &

Murphy, 1977), and fetal GC overexposure, which can result in

restricted fetal growth and altered offspring HPA axis function (Bolten

et al., 2011; Seckl, 2004).

Further, outside of humans (Field, Diego, &Hernandez-Reif, 2006;

Thayer, Feranil, & Kuzawa, 2012), some studies supporting the link

between maternal GCs and fetal growth restriction have relied on

exogenously administered synthetic GCs (e.g., dexamethasone,

betamethasone), which frequently exceed naturally occurring

levels of endogenous hormone and can pass across the placenta

unobstructed (e.g., Jobe, Newnham, Willet, Sly, & Ikegami, 1998;

reviewed in Seckl, 2004). Thus, the growth effects established by

these studies may exaggerate the role of endogenous maternal

cortisol on neonatal body mass among typical gestations. In support

of this hypothesis, two studies on unmanipulated callitrichids found

either no relationship (Mustoe, Birnie, Korgan, Santo, & French,

2012) or a positive relationship (Bales, French, & Dietz, 2002)

between endogenous maternal gestational GCs and offspring body

mass index (BMI) shortly after birth. However, both of these studies

considered only maternal GC production and did not measure fetal

exposure directly. As some research suggests that the ability of GCs

to restrict fetal growth during late gestation is contingent only upon

elevated maternal—but not fetal—GCs (Moss, Nitsos, Harding, &

Newnham, 2003), direct measurement of fetal GC exposure is critical

to determining the relative effects of maternal versus fetal GC

production.

Beyond cortisol, the hormone dehydroepiandrosterone-sulfate

(DHEAS), the sulfated form of dehydroepiandrosterone (DHEA), may

alsomediatematernal effects on fetal growth.DHEAS is produced in the

adrenal cortex and is a precursor to anabolic androgenic steroids, which

drive organ and tissue growth (Longcope, 1996). In the fetus, DHEAS is

the primary hormone secreted by the fetal zone of the fetal adrenals

(Mesiano&Jaffe, 1997).While fetalDHEASproduction increasesacross

gestation and peaks during late gestation (Oh et al., 2006), maternal

production ofDHEAS decreases across gestation and reaches its lowest

point during late gestation, with plasma levels subsequently doubling at

parturition (Peter, Dörr, & Sippell, 1994). The degree to which maternal

and fetalDHEAScan together or independently drive fetal development

is poorly understood, however, as there has been no prior research on

transplacental passage of maternal-origin DHEAS to the fetal compart-

ment. Nevertheless, in humans, DHEAS has been implicated in faster

postnatal growth in humans (Estourgie-van Burk, Bartels, & Boomsma,

2015; Ibáñez, Potau, Marcos, & de Zegher, 1999). Yet DHEAS is

also thought to have a number of anti-GC properties, potentially

counter-acting

GC-mediatedeffects (Kalimi,Shafagoj, Loria,Padgett,&Regelson,1994;

Muller, Hennebert, & Morfin, 2006), including effects on growth.

These potentially contradictory effects provide strong arguments for

measuring GCs and DHEAS in tandem in hopes of gaining a more

comprehensive, “net-effect” interpretation of the relationship between

GCs and developmental outcomes (de Bruin et al., 2002;Mocking et al.,

2015).

In this study, we aim to address the role of maternal gestational

GCs and DHEAS as drivers of fetal growth by measuring hormones in

hair collected shortly after parturition from18mother–offspring dyads

in a breeding colony of captive, socially housed vervet monkeys

(Chlorocebus aethiops). Prior studies on this population have utilized

hair hormone concentrations to explore developmental patterns of

endocrine function (Laudenslager, Jorgensen, & Fairbanks, 2012) and

stress-related changes in HPA axis function (Fairbanks et al., 2011).

Unlike samples such as blood and saliva, which capture acute changes

in endocrine function, hair sampling represents a more integrated

measure, as hormones are slowly incorporated into hair over an
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extended period of time (Russell, Koren, Rieder, & Van Uum, 2012).

Furthermore, because fetal monkey hair begins growing approxi-

mately 2 months prior to parturition (Schultz, 1937), neonatal hair

hormones represent a cumulative a measure of hormone exposure

(including maternal and fetal sources) during late gestation (Kapoor

et al., 2014).

Our study has several aims. First, we investigate whether maternal

characteristics (specifically, bodymass and parity) in female vervets are

associated with concentrations of maternal hair cortisol. We predict

that lighter and lower parity females will exhibit higher concentrations

of hair cortisol. Next, we compare maternal and neonatal hair cortisol

concentrations and determine which is predictive of neonatal body

mass. If maternal hormones are driving variation in neonatal body

mass, we expect that maternal hormone production will correlate with

fetal hormone exposure, and that maternal hormones, in addition to

neonatal hair hormone concentrations, will predict neonatal mass.

However, if fetal physiological strategies (endogenous hormone

production and placental conversion) are important modulators of

the effects of maternal GCs on neonatal mass, maternal hair GCs may

not predict fetal hair GCs, and fetal GC exposure is expected to be

the sole driver of neonatal mass. Following previous studies, we

predict specifically that elevated neonatal hair cortisol restricts fetal

growth as measured by neonatal body mass. Given the apparent

growth-promoting and anti-GC properties of DHEAS, we hypothesize

that DHEAS will also be associated with maternal characteristics and

neonatal body mass, but make no specific predictions about

directionality.

2 | METHODS

2.1 | Study site and population

Subjects were 18 vervet monkey mother–offspring dyads housed at

the Vervet Research Colony (VRC) at the Wake Forest Primate

Center in Winston-Salem, North Carolina. Vervet monkeys are highly

social Old World monkeys that give birth to single offspring and

breed annually (Else, Eley, Wangula, Worthman, & Lequin, 1986).

Subjects were from eight matrilineal social groups living in

enclosures with access to both indoor and outdoor areas. Social

groups at the VRC resemble vervet social groups in the wild, with all

offspring raised by their mothers, and all females remaining in their

natal groups for life. In both captivity and in the wild, vervet

monkeys exhibit strict matrilineal dominance hierarchies where high

ranking individuals have priority of access to both space and

resources (Fairbanks, 1980; Whitten, 1983). The adult females

in our cohort ranged in body mass from 3.7 to 7.0 kg

(mean ± SE = 5.1 ± 0.21 kg), ranged in parity from giving birth to

their 1st through 9th offspring during the current study, and ranged

in age from 3.6 to 19.1 years (mean ± SE = 9.6 ± 0.99 years; Table 1).

All females gave birth through unassisted vaginal deliveries between

June 18, 2017 and August 27, 2017 after approximately 5.5 months

long gestations. Neonates ranged in body mass from 0.28 to 0.43 kg

(mean ± SE = 0.35 ± 0.04 kg).

2.2 | Hair sampling and body mass measurements

The research presented in this manuscript adhered to the American

Society of Primatologists Principles for the Ethical Treatment of Non-

Human Primates. All animal use procedures for this study were

approved by the Institutional Animal Care and Use Committee of each

institution.

Hair and body mass measurements were collected from both

mothers and offspring from May 2017 to November 2017, during

routine veterinary examinations that took place within 2–5 days after

parturition (mean = 3.78 days). Adult females and their offspring were

temporarily removed from their social groups for sampling. Adult

femaleswere lightly sedatedwith 8–10mg/kg ketamine hydrochloride

administered intramuscularly and offspring were briefly separated

from their mothers for sampling. Body mass measurements from adult

females and offspring were then collected. From adults, the entire

length (mean ± SE: 4.59 ± 0.19 cm, range = 3.11–6.58 cm) of hair was

shaved using commercial electric clippers from a 4 × 4 cm patch on the

upper back between the shoulder blades. From offspring, the entire

length (mean ± SE: 1.19 ± 0.07 cm, range = 0.75–1.69 cm) of hair was

shaved from a 2 × 2 cm patch at the posterior vertex region behind the

neck. After the procedure, females recovered together with their

infants in individual cages before being returned to their social group.

Adult females were subject to an additional hair sampling at 4 months

postpartum as part of another study, in which the same patch of hair

was shaved from 14 of the originally sampled adult females to

determine average hair growth rate. Four females were not resampled

as they were not included in the second study. Hair samples were

placed into small aluminum foil pouches inside of individual plastic bags

and stored at room temperature before being shipped to Stony Brook

University for analysis.

2.3 | Hormone assays

To capture maternal hormone production over the last 2 months of

gestation, which parallels the period of time fetal monkey hair begins

to grow (Schultz, 1937), maternal hair was trimmed such that only

1.8 cm of hair from the proximate end of the shaft (representing the

last∼2months of gestation) was retained for further analysis. This was

based on the average monthly hair growth rate calculated for adult

females (0.90 cm/month, N = 14, range = 0.63–1.26 cm), a method

commonly used in studies of hair hormones in humans (Stalder et al.,

2012; Massey et al., 2016; Romero-Gonzalez, Caparraos-Gonzalez,

TABLE 1 Descriptive statistics relating to maternal and neonatal
metadata

Mean SE Range

Parity 4.94 2.29 1–9

Maternal age (years) 9.57 0.99 3.6–19.1

Maternal mass (kg) 5.12 0.21 3.7–7.00

Neonatal mass (kg) 0.35 0.04 0.28–0.43
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Gonzalez-Perez, Delgado-Puertas, & Peralta-Ramirez, 2018). Proc-

essing of hair samples for both hormones followed a previously

published protocol for the extraction of cortisol from small samples

(Meyer, Novak, Hamel, & Rosenberg, 2014). First, hair was washed

twice in isopropanol (>99% purity) to remove any external

contaminants and left to dry for a minimum of 4 days. Dried hair

was then placed into a reinforced microcentrifuge tube along with

three 3.2 mm chrome steel beads and ground using a bead beater

(Mini Beadbeater-1, BioSpec Products, Inc.) at 4,200 rpm for 3min.

Once ground, 1.5 ml of methanol (>99% purity) was added to the

tube and the sample was left to incubate on a shaker with

gentle rotation at 160 rpm for 24 h. At the end of the incubation,

the tube was centrifuged at 10,000 rpm for 5 min to pellet the

powdered hair. The supernatant (methanol containing extracted

hormone) was then transferred to a new tube and frozen at −80 °C.

On the day of the assay, samples were removed from the freezer,

transferred to glass culture tubes (200 μl for cortisol, 250 μl for

DHEAS), and dried down under nitrogen gas in a 37 °C water bath.

Dried samples were then reconstituted in buffer (250 μl for cortisol,

250 μl for DHEAS; Salimetrics, LLC) before being run in duplicate on

assay (25 μl cortisol, 100 μl DHEAS).

Serial dilutions of pooled hair extract were parallel to the

standard curves for both cortisol and DHEAS assays. Accuracy was

evaluated by spiking the kit standards with a pooled sample of low

hormone concentration and running these spiked standards in

quadruplicate to determine recovery. Average recovery for the

spiked cortisol and DHEAS were 97 ± 6.61% (N = 6) and 96 ± 2.2%

(N = 5), respectively. Pooled samples were included as controls in

addition to those provided by commercial kits. The inter-assay

coefficients of variation (CVs) for the cortisol assay (N = 4) were 3.8%

(high pool), 1.6% (low pool), 1.2% (high control), and 3.5%

(low control). For the DHEAS assay (N = 4), the inter-assay CVs

were 9.0% (high pool), 1.9% (low pool), 0.3% (high control), and 1.7%

(low control). The mean intra-assay CV was 5.4% for the cortisol

assay (N = 4) and 7.1% for the DHEAS assay (N = 4).

2.4 | Statistical analyses

Hair hormone concentrations are presented here as pg/mg of hair

(Davenport, Tiefenbacher, Lutz, Novak, & Meyer, 2006). Hormone

concentrations and neonatal body mass were normally distributed

upon evaluation with Shapiro–Wilk tests and so remained untrans-

formed for linear modeling. First, two linear regressions were used to

examine the relationship between maternal characteristics and

maternal hair hormone concentrations. Maternal parity and body

mass were included as predictor variables in both models, with hair

cortisol as the dependent variable in the first model and DHEAS as

the dependent variable in the second. Maternal parity and maternal

age were strongly correlated (R = 0.77, p < 0.001), thus to avoid

multicollinearity, parity rather than age was included in linear models

as it is a more comprehensive measure of reproductive experience

than age per se. Next, correlations betweenmaternal and neonatal hair

hormone concentrations were tested using the Pearson's correlation

coefficient for continuous data. Finally, to examine the independent

effects of maternal and neonatal hormone concentrations on neonatal

body mass, two linear regressions were performed: the first included

maternal hormone concentrations as predictor variables and neonatal

body mass as the dependent variable, and the second included

neonatal hormone concentrations as predictor variables and neonatal

body mass as the dependent variable. Maternal and infant hair

hormones were included in separate models to retain power. Both

models included neonatal age in days as an additional variable to

control for potential differences in body mass based on sampling date.

Two individuals were excluded from the bodymassmodels as they had

very low birth weights. However, these data points were included in

corresponding plots as it is unclear whether their outlier status reflects

methodological error or biologically relevant differences. All analyses

were performed in R v. 3.2.3 (R Core Team, 2015) using the base

package with significance set at p ≤ 0.05. Effect sizes for linear models

were computed using Cohen's f2 (Selya, Rose, Dierker, Hedeker, &

Mermelstein, 2012). Residual plots were generated using the package

visreg (Breheny & Burchett, 2016).

3 | RESULTS

Maternal body mass was not associated with maternal hair cortisol

concentrations, while parity was positively, rather than negatively

associated with maternal hair cortisol (estimate ± SE: −8.72 ± 7.29,

p < 0.05, N = 18, f2 = 0.35, Figure 1). Neither parity nor body mass

predicted maternal hair DHEAS concentrations. Maternal hair cortisol

was not correlated with neonatal hair cortisol (R = 0.16, p = ns;

Figure 2). However, concentrations of maternal hair DHEAS and

neonatal hair DHEAS were correlated (R = 0.50, p < 0.05; Figure 2).

We also found no relationship between maternal concentrations

of either hormone and neonatal body mass. Neonatal hair cortisol

concentrations positively predicted neonatal body mass (estimate ±

SE: 1.02e-04 ± 4.24e-05, p < 0.05, N = 16, f2 = 0.71; Figure 3). Finally,

there was no relationship between neonatal DHEAS and neonatal

body mass.

4 | DISCUSSION

Our results represent some of the first data on how unmanipulated

variation in maternal condition predicts maternal gestational GCs and

how maternal gestational GCs in turn predict fetal GC exposure and

fetal growth. Althoughwe predicted that low parity and low bodymass

mothers would have the highest hair GC concentrations, we found no

relationship between maternal body mass and GCs, and a positive

rather than negative relationship between parity and GCs. We also

found that maternal GCs were unassociated with neonatal hair GCs or

neonatal body mass; however, neonatal hair GCs were positively

predictive of neonatal bodymass. These results are consistentwith the

hypothesis that prenatal GC exposure contributes to fetal growth, but

raise questions about the consistency of body mass and parity as

mediators of maternal GCs, the contribution of maternal GCs to
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neonatal GC exposure, and the directionality of the relationship

between prenatal GCs and growth. In terms of DHEAS, we found that

maternal and neonatal hair DHEAS concentrations were positively

correlated, but there was no relationship between DHEAS and

maternal characteristics or neonatal body mass. Thus, despite being

correlated with maternal DHEAS, fetal DHEAS exposure appears

uninvolved in fetal growth during late gestation.

4.1 | Cortisol and maternal condition

Our finding that maternal cortisol was unrelated to maternal body

massmay be explained by stable nutritional conditions associatedwith

captivity. Although previous research has shown that food restriction

increases GC production in humans and rodents (Seckl, 2004;Welberg

& Seckl, 2008), variation in body mass may have been too small among

our study subjects to capture a significant relationship. Indeed, none of

FIGURE 1 Relationship between parity and maternal hair cortisol concentrations (pg/mg) (points = individual data; line = linear regression
line between the variables in question; R2= 0.23)

FIGURE 2 Relationship between maternal and neonatal hair hormone concentrations (pg/mg) (points = individual data; line = linear
regression line between the variables in question; cortisol R = 0.16; DHEAS R = 0.50)
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our subjects were categorized as clinically undernourished or

overweight and thus may not exhibit phenotypes as extreme as those

characterized in prior studies (e.g., Seckl, 2004; Welberg & Seckl,

2008). It is therefore possible that maternal body mass effects on GCs

only become pronounced when undernourishment extends beyond a

critical threshold (e.g., Romero & Wikelski, 2010).

Our finding that lower parity females exhibited lower, rather

than higher, hair GCs may also warrant further explanation. On the

one hand, these results may suggest that low parity is not

consistently associated with greater maternal physiological stress

(e.g., Altmann et al., 2004; Kapoor et al., 2014). However, our finding

of a positive relationship rather than no relationship between the

two variables may suggest other influences. First, because we

examined maternal parity as a continuous rather than a categorical

variable (primiparous vs. multiparous), our study may be less likely to

account for the differences in energetic and social stress faced by

experienced versus inexperienced, particularly first-time, mothers.

For example, Dettmer et al. (2015) found that multiparous females,

including second-time mothers, had lower GC concentrations than

primiparous females (but see Hinde et al., 2015 for continuous

relationship). Unfortunately, we were unable to dichotomize parity

because our sample included only one primiparous female. Second,

because parity was positively correlated with age in the present

study, our results may largely reflect age- rather than parity-related

GC patterns. In both humans (Lupien et al., 1998; Lupien et al., 1994)

and nonhuman primates (Dettmer, Novak, Meyer, & Suomi,

2014; Fourie, Jolly, Phillips-Conroy, Brown, & Bernstein, 2015;

Laudenslager et al., 2012; Sapolsky & Altmann, 1991), adult cortisol

concentrations become significantly higher during later life, a

transition which occurs around at ∼12 years of age in baboons

(Fourie et al., 2015), and ∼15 years of age in macaques (Dettmer

et al., 2014), comparable to the age of older females in the present

study. Thus age-related increases in GCs associated with senescence

(Sapolsky & Altmann 1991) may indeed explain our findings.

4.2 | Mother–offspring cortisol concentrations and
fetal growth

Despite a number of studies that have examined the role of maternal

GCs on offspring development, we found a lack of correlation

between maternal hair GCs during the third trimester of pregnancy

and neonatal hair GCs, a result that is consistent with two other

studies in humans (Hoffman, D’Anna-Hernandez, Benitez, Ross, &

Laudenslager, 2017; Romero-Gonzalez et al., 2018). Collectively,

these studies suggest that maternal cortisol production does not

directly correlate with offspring cortisol exposure. Given that fetal

and maternal tissue together contribute to the placenta, the local

conversion of maternal-origin cortisol to biologically inactive

cortisone by placental 11β hydroxysteroid dehydrogenase type 2

(11β-HSD2) may be one mechanism by which fetuses exert some

control over prenatal GC exposure and its potential downstream

effects.

Despite the lack of correlation between maternal and offspring

hair GCs, we found that infant hair GCs positively predicted neonatal

body size. This pattern runs counter to observational studies on

humans (Thayer et al., 2012; Field et al., 2006), as well as experimental

research investigating the influence of synthetic GCs on neonatal body

mass (Jobe et al., 1998). Although results from such studies likely

reflect extreme types of physiological stress (associated with modern

human lifestyles or captive environments), experimental studies are

particularly problematic because synthetic GCs are often administered

at exaggerated dosage levels and can pass unrestricted across the

placenta. Within this magnified range of synthetic GC administration,

GCs appear to have a negative relationship with neonatal mass. By

FIGURE 3 Relationship between neonatal hair cortisol concentrations (pg/mg) and neonatal body mass (kg) (points = individual data;
line = linear regression line between the variables in question; blue points = outliers not included in linear regression model; R2 = 0.48)
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contrast, most of the data in our study may represent the lower end of

GC variation, which appears to have a positive, rather than a negative

relationship with fetal growth. Similar results have been found in

unmanipulated studies of wild lion tamarins (Bales et al., 2002),

suggesting that the GC–growth relationship may vary depending on

the range of hormone concentration in question.

Intriguingly, the two individuals in our study who were excluded

from the neonatal body mass model were characterized by very low

bodymass as well as the highest hair cortisol concentrations (Figure 3).

These data may suggest that past a particular threshold, the positive,

growth-promoting effects of gestational GC exposure begin to restrict

growth. In support of this hypothesis, a number of GC-mediated

effects are known to follow similar inverted U-shaped curves (Joëls,

2006; Mateo, 2008; Sapolsky, 2015; Schilling et al., 2013), where too

little or too much GC exposure have similar effects. We hypothesize

that the effects of fetal GC exposure on fetal growth during late

gestation may be yet another example of a U-shaped relationship.

Future studies that examine neonatal body mass in relation to a larger

range of GC concentrations will be necessary to test this hypothesis.

4.3 | DHEAS, maternal characteristics, and fetal
growth

Similar to our prediction for maternal GCs, we expected to find an

effect of maternal condition on DHEAS concentrations. However, we

found no relationship between the two variables, suggesting that

maternal DHEAS production may be buffered against variations in

maternal mass and is independent of prior reproductive experience

and/or age. Interestingly however, maternal and neonatal hair DHEAS

were positively correlated, indicating perhaps that placental DHEAS

permeability is high. However, this hypothesis is purely speculative as

there has been no previous research on the transfer of maternal-origin

DHEAS across the placenta. Furthermore, because the fetus produces

approximately 60% of late gestation DHEAS (Chatelain, Dupouy, &

Allaume, 1980; Sinha, Halasz, Choi, McGivern, & Redei, 1997), it is

possible that the positive correlation we found between maternal and

fetal DHEAS was driven by fetal, not maternal production.

Finally, we found no relationship between maternal DHEAS,

fetal DHEAS exposure, or neonatal body mass, suggesting that

DHEAS is not a significant contributor to fetal growth during late

gestation. Notably, late gestation DHEAS (of which 60% is of fetal

origin) is largely converted to estrogen by the placenta in order to

facilitate parturition (Kaludjerovic & Ward, 2012; Walsh, Stanczyk, &

Novy, 1984). Thus the placenta rather than the fetus may be the

target of the majority of DHEAS action during this time. Given

research documenting a role of DHEAS in accelerated postnatal

growth (Estourgie-van Burk et al., 2015), it is possible that the

effects of DHEAS on growth are greater during postnatal rather than

prenatal life. Nevertheless, because data on non-GC hormones and

their potential effects of offspring prenatal development remain

rare, we encourage more research on the potential role of DHEAS,

particularly within the range of natural variation in maternal and fetal

production.
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