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Evolutionary stasis is one of the most commonly observed and 
least adequately explained phenomena in evolutionary biol-
ogy1,2. A striking example of stasis is the conserved variation 

in numbers of presacral vertebrae over more than 200 million years 
of mammal evolution3–6. In mammals, cervical vertebrae are nearly 
constant, at seven, in all but three genera despite dramatic differ-
ences in measured neck length and function7. Cervical number 
is highly variable in sauropsids3,7–9 and, in fact, cervical number 
is more variable than other regions in birds, in stark contrast to 
mammals10. The thoracolumbar (combined thoracic and lumbar) 
region of mammals is also relatively conserved, with most mam-
mals possessing 19 (or 20 in the case of carnivorans) thoracolumbar 
vertebrae8,9,11–15. Together, cervical and thoracolumbar regions make 
up the presacral vertebral column and account for the overall low 
variation of vertebral counts found in mammals3.

The numerical composition of the vertebral column has gen-
erated newfound interest in recent years, due in part to the role 
of Hox genes in its evolution16,17 and, particularly, in light of our 
modern understanding of phylogenetic relationships among mam-
mals3,8,9,12–15,18–20. Phylogenetic inertia, developmental constraints, 
metabolic rates and stabilizing selection have variously been pro-
posed to restrict variation in regional numbers of vertebrae in 
mammals1,3,7–9,11–15,21–23. Explanations for cervical stasis in mam-
mals invoke developmental constraints7,14,21–23. Galis7 and Bots and 
colleagues21 proposed that deviations from seven cervical verte-
brae are selected against due to negative pleiotropy, namely their  

association with congenital abnormalities such as neonatal cancer. 
The few mammal species that are exceptions to the typical pattern 
of seven cervical vertebrae—manatees (Trichechus) and tree sloths 
(Choloepus and Bradypus)—are argued to have overcome these 
negative pleiotropic effects due to reduced oxidative DNA damage 
(and therefore reduced cancer susceptibility) associated with low 
metabolic rates7,23. In humans, large percentages of perinates with 
congenital abnormalities, including early childhood cancers, also 
show evidence of homeotic change (for example, cervical ribs)21,24,25 
(but see ref. 13,where this trend was not found in other mammals).

In addition, several mammalian innovations, namely atlas and 
axis specialization and the appearance of a muscular diaphragm, 
are developmentally and functionally linked to cervical stasis14,22,26. 
Locomotor stamina, particularly during running, is achieved 
through dorsoventral movement of the vertebral column and 
continuous ventilation via the muscular diaphragm27–29, a derived 
mammalian structure that acts to facilitate inhalation and compart-
mentalize viscera30. The origin of the mammalian diaphragm has 
also been linked to the high metabolic rates generally found among 
mammals14,31. The migratory muscle precursor cells that form the 
mammalian diaphragm and their innervation via the phrenic nerves 
are of mid-cervical somatic origin; therefore, potential disruption of 
the muscularization of the diaphragm, which is vitally important 
in mammalian respiration and locomotion, is identified as a source 
of constraint on cervical number change14,22,26. It has been hypoth-
esized (refs. 14,22) that sloths and manatees have low ventilatory 
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demands and are therefore at risk of compromised development 
of the diaphragm; both possess derived, atypical diaphragm mor-
phologies32,33. Therefore, the innovation of the muscular diaphragm 
provides an alternative explanation for stasis in cervical numbers of 
vertebrae in mammals.

Lineage-specific patterns of variation in thoracolumbar verte-
bral numbers are also apparent: the major clades Afrotheria and 
Xenarthra show increased departures from, and variation in, num-
bers of thoracolumbar vertebrae compared to both Marsupalia 
and Boreoeutheria (Laurasiatheria + Euarchontoglires), although 
certain primates are also divergent9,12,13,19. Galis and colleagues34 
proposed that there exists a combination of biomechanical and 
developmental constraints on presacral vertebral numbers in mam-
mals that rely on fast running and leaping for potential predator 
avoidance and prey capture. The authors argued that homeotic 
mutations that modify the numerical composition of the presacral 
column are often associated with incomplete homeotic shifts at the 
lumbo-sacral boundary, resulting in vertebrae that are partially or 
asymmetrically fused to the pelvis (Fig. 1). Because such incomplete 
shifts could potentially hinder spinal mobility, such mutations are 
expected to be selected against in fast-running and agile (cursorial) 
mammals, but tolerated in slower-moving (ambulatory or slow-
climbing) mammals34. The need to engage in fast running caused 
long-term stabilizing selection, possibly leading to developmental 
canalization of the number of presacral vertebrae and resulting in 
low variation in presacral counts in many clades of mammals34. 

Because Afrotheria and Monotremata contain many slow-moving 
or ‘low-activity’ species23,34, where biomechanical constraints on 
running would be weaker, it is argued that species in these clades 
possess greater variation in presacral numbers of vertebrae, as do 
slow-moving taxa in other clades34.

Morpho-functional correlates between vertebral shape and ecol-
ogy have been documented extensively35–47. Most mammals, includ-
ing many rodents, lagomorphs, marsupials, primates, artiodactyls 
and especially carnivorans, are dorsomobile runners whose spines 
flex and extend sharply during the gait cycle to augment speed 
during running36,48–52 (Fig.  2). Many arboreal species also possess 
a mobile spine that flexes and extends rapidly during leaping53,54. 
In contrast, some mammals are dorsostable, possessing back-
stiffening features that stabilize the vertebral column in various 
ways34,36,39,46,50,54–65. Body size has been shown to negatively correlate 
with sagittal flexibility in bovids56,61, such that large-bodied bovids 
(and other ungulates—for example, elephants and perissodactyls) 
have a relatively rigid vertebral column compared to smaller mam-
mals (see ref. 52 regarding sagittal bending in small mammals), 
frequently achieved via cranio-caudally tall lumbar transverse pro-
cesses that inter-articulate or closely approximate each other and 
the iliac blades of the pelvis34,36,50,60,62,66.

Dorsostable features are also found in mammals adapted to 
suspensory and quadrumanuous slow climbing, bridging and can-
tilevering, especially at large body sizes where lower back stability 
reduces buckling and damage to the intervertebral discs and allows 
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Fig. 1 | Examples of intermediate lumbar/sacral vertebrae. a, Mustela 
vison (AMNH 176566) lower thoracic, lumbar and sacral vertebrae, ventral 
view. b, Lepus alleni (AMNH M-1872) lumbar/sacral/caudal vertebrae, 
ventral (left) and dorsal (right) views. c, Gorilla gorilla (CMNH HTB-1730) 
lumbar/sacral vertebrae, ventral (left) and dorsal (right) views. Note that 
incomplete homeotic changes, resulting from perturbations in Hox gene 
expression boundaries that manifest in regional vertebral asymmetries, 
frequently appear across multiple vertebral borders (for example, at the 
thoracolumbar and lumbo-sacral borders in the M. vison specimen).
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Fig. 2 | the last three lumbar vertebrae and sacrum in two fast-running 
mammals. a–c, Comparison of the dorsostable and dorsomobile vertebral 
column. The onager (Equus hemionus), a dorsostable runner (a) compared 
with the serval (Leptailurus serval), a dorsomobile runner (b). The line 
drawing (c, modified from ref. 49) shows the flexibility of the vertebral 
column in a running dorsomobile mammal (lower), where stride length 
is increased through flexion and extension of the spine, in contrast to the 
relative stability of the vertebral column in a running dorsostable mammal 
(upper), where the spine is stiff and does not actively contribute to 
locomotion. Note that the onager is a sub-adult individual without a fully 
fused sacrum. Credit: Line drawing modified from Hildebrand, M. Motions 
of the running cheetah and horse. J. Mammal. 40, 481–495, 1959 (ref. 49), by 
permission of the American Society of Mammalogists/Oxford Academic.
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rotation and lateral bending in the thoracic region during forelimb-
dominated, antipronograde positional behaviours54,55,58–60,64,65,67–76. In 
the large-bodied great apes, the lumbar column is relatively short 
and a major portion of it is ‘entrapped’ between the tall, wide iliac 
blades of the pelvis, ensuring its virtual immobility59,65,72. Hominoids 
and sloths, in particular, are key examples of lineages that have expe-
rienced disruptions of vertebral borders and associated limb girdles 
(in hominoids, the lumbo-sacral border and lower limb55,64,77,78, and 
in sloths, both the cervical–thoracic border and upper limb and the 
lumbo-sacral border and lower limb23,79). Aquatic mammals, such as 
sirenians and cetaceans, that have experienced disruption of the pel-
vic girdle (that is, do not have sacra) also demonstrate highly variable 
departures in total presacral and regional numbers of vertebrae8,80,81.

Results of sampling of terrestrial quadrupedal mammals 
from just four clades (Monotremata, Afrotheria, Carnivora and 
Cetartiodactyla) can be found in ref. 34. Potentially informative 
orders including Rodentia, Primates, Perissodactyla and Marsupalia 

have not been studied. Additionally, mammals live in various  
habitats (for example, arboreal, terrestrial, aquatic, fossorial) and 
possess adaptations of their locomotor skeletons, including mobility 
(or stability) of the vertebral column, to travel and feed in them (for 
example, via suspension, quadrupedalism, bipedalism, swimming, 
digging). Here, we analyse a phylogenetically and functionally 
broad comparative sample of mammals to test ten sets of hypotheses 
based on running speed (Analyses 1–3), habitat (Analysis 4), body 
posture (Analysis 5), positional behaviour (Analysis 6), limb and 
tail use (Analysis 7), broad locomotor modes (Analysis 8) and con-
tribution of the spine to locomotion (Analyses 9–10) (see Methods 
and Supplementary Table 1).

Results
We do not find evidence for significantly elevated variation in num-
bers of presacral vertebrae in slow-running (versus fast-running)  
mammals in our phylogenetic analysis of variance (ANOVA) 

Table 1 | Phylogenetic ANovA results

Analysis comparison N F value P valuea Post hoc t value HSB P 

Analysis 1 Fast–slow 58–60 8.762 0.1048 2.960 0.1048

Analysis 2 Fast–slow 34–54 6.695 0.0798 3.579 0.1673

Fast–int. 34–30 1.276 0.4097

Slow–int. 54–30 2.037 0.2810

Analysis 3 Fast–slow 55–46 2.048 0.4890 1.431 0.4890

Analysis 4 Terr.–arb. 90–50 7.124 0.1428 4.183 0.5608

Terr.–foss. 90–9 1.360 1

Terr.–aqu. 90–5 2.451 0.1778

Arb.–foss. 50–9 1.167 1

Arb.–aqu. 50–5 0.828 1

Foss.–aqu. 9–5 1.167 1

Analysis 5 Upright–non. 19–130 3.277 0.3999 1.810 0.3999

Analysis 6 Antipro.–not 19–131 36.269 0.0007 6.022 0.0007
Analysis 7 Quad.–susp. 91–29 13.832 0.0005 7.221 0.0021

Quad.–bip. 91–6 0.509 1

Quad.–dig. 91–21 2.293 0.9796

Quad.–swim. 91–8 1.713 0.9796

Bip.–susp. 6–29 3.916 0.0568

Bip.–dig. 6–21 1.664 0.9796

Bip.–swim. 6–8 1.543 0.9796

Susp.–dig. 29–21 3.442 0.4549

Susp.–swim. 29–8 2.472 0.9796

Dig.–swim. 21–8 0.108 1

Analysis 8 Run.–climb. 85–28 22.27 <0.0001 7.737 <0.0001
Run.–ambl. 85–26 3.143 0.2260

Run.–other 85–16 3.942 0.0583

Ambl.–climb. 26–28 3.604 0.2260

Ambl.–other 26–16 1.164 0.5806

Climb.–other 28–16 1.951 0.5806

Analysis 9 Mob.–stab. 90–65 45.075 <0.0001 6.714 <0.0001
Analysis 10 Mob.–DS climb. 73–26 49.308 <0.0001 9.759 <0.0001

Mob.–DS quad. 73–18 4.073 0.0235

DS climb.–quad. 26–18 3.633 0.1100

HSB P, Holm’s sequential Bonferroni P value; int., intermediate speed; terr., terrestrial; arb., arboreal; foss., fossorial; aqu., aquatic; non., non-upright; antipro., antipronograde; not , not antipronograde; 
quad., quadrupedal; susp., suspensory; bip., bipedal; dig., digging; swim., swimming; run., running and leaping; climb., slow climbing and suspension; ambl., ambling; other, digging/swimming/flying; 
mob., dorsomobile adaptations; stab., dorsostable adaptations; DS climb., dorsostable slow climbing and suspension; DS quad., dorsostable quadrupedal locomotion. aSignificant P values here and for HSB 
are in bold, and judged using alpha = 0.005.
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analyses (Analysis 1: P = 0.1048; Analysis 2: P = 0.0798; Analysis 3: 
P = 0.489; Table 1). Habitat also failed to explain variation in mam-
malian presacral numbers (Analysis 4: P = 0.1428; Table  1). Body 
posture categories (upright or non-upright) were not significant 
(Analysis 5: P = 0.3999), but antipronograde taxa (that is, those 
that are adapted to suspensory behaviour, cantilevering or quadru-
manuous slow climbing) are significantly more variable than bipeds 
and stereotypical above-branch or terrestrial quadrupeds (Analysis 
6: P = 0.0007; Table 1). Classification by limb and tail use (general 
quadruped, biped, suspensory, digging and swimming) produced 
a significant phylogenetic ANOVA result (Analysis 7: P = 0.0005), 
and post hoc tests showed that only the suspensory versus qua-
drupedal comparison was significant (P = 0.0021; Table  1). Broad 
locomotor modes are also significant (Analysis 8: P < 0.0001): slow-
climbing/suspensory species are more variable than runners/leapers  
(P < 0.0001; Table 1). Mammals with dorsostable adaptations of the 
lower back are more variable in presacral numbers of vertebrae than 

dorsomobile mammals (Analysis 9: P < 0.0001; Table  1). Among 
dorsostable mammals, those adapted to suspensory and other  
antipronograde behaviours are more variable than dorsomobile 
mammals (Analysis 10: P < 0.0001), whereas those adapted to  
dorsostable quadrupedal locomotion are not (P = 0.0235).

The ancestral state reconstruction (ASR) highlights the appear-
ance of high variation in presacral numbers of vertebrae in certain 
lineages (Fig.  3). High morphological heterogeneity indices fre-
quently accompany major departures from the presumed primitive 
number of presacral vertebrae in most mammal clades (26–27), 
whereas lower indices tend to correspond to mammals that retain 
the primitive number of presacral vertebrae (Fig. 3).

Discussion
An adaptive explanation for the stability of presacral numbers of 
vertebrae in mammals was proposed recently by Galis and col-
leagues34: fast, agile running (cursoriality) and leaping, which 
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Fig. 3 | Ancestral state reconstruction of presacral vertebral numbers. The morphological heterogeneity index, a measure of intra-specific variation, is 
used in the ASR on the left; modal numbers of presacral vertebrae are used in the ASR on the right. Brownian motion is used to model the evolution of these 
variables. The left panel uses a heat map that reflects low (yellow) and high (purple) morphological heterogeneity indices. The right panel plots numbers of 
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Slotow (vectorized by T. Michael Keesey; Syncerus), Gareth Monger (Pongo) and Maija Karala (Jaculus)) (https://creativecommons.org/licenses/by/3.0/).

NAtuRE EcoLoGy & EvoLutIoN | VOL 3 | JUNE 2019 | 949–956 | www.nature.com/natecolevol952

https://www.123rf.com/
http://phylopic.org/
https://creativecommons.org/licenses/by/3.0/
http://www.nature.com/natecolevol


ArticlesNature ecology & evolutioN

necessitate flexion and extension of the spine, would be compro-
mised by intermediate morphologies that often accompany changes 
in numbers of vertebrae (for example, lumbarized sacral vertebra 
or sacralized lumbar vertebra; see Fig. 1), whereas slower-moving 
(ambulatory) mammals can tolerate intermediate morphologies 
because their locomotion would not be severely impaired. Slow-
moving mammals (of clades Carnivora, Artiodactyla, Monotremata 
and Afrotheria) were found more commonly to possess non-modal 
numbers of presacral vertebrae compared to fast-running species 
(of Carnivora and Artiodactyla)34. We expanded those comparisons 
to other mammalian clades and tested for the potential influence of 
habitat, limb and tail use, locomotor behaviour, posture and spinal 
contribution to locomotion, in addition to speed.

The results presented here do not explicitly support the hypoth-
esis proposed in ref. 34 that running speed per se acts as a constraint 
on presacral vertebral variation. Additionally, we did not find dif-
ferences between terrestrial and arboreal taxa or between any other 
habitat comparisons, nor did we find upright (bipedal or otherwise 
orthograde) taxa more variable than quadrupedal, pronograde taxa 
(Analyses 4–5; Table 1). Dorsostability of the vertebral column is 
associated with high variation in, and departures from, modal num-
bers of presacral vertebrae (Analysis 9), particularly dorsostability 
as an adaptation to suspension and other antipronograde positional 
behaviours (Analysis 10; Table 1). The African buffalo (Syncerus) 
and elephants (Elephas and Loxodonta) are highly variable taxa 
that exemplify dorsostable runners such as other, large-bodied 
ungulates36,50,60,62,66 (Fig. 2). All xenarthrans possess back-stiffening 
morphologies, possibly as an ancestral digging adaptation in that 
lineage82,83. The vertebral column of Scutisorex somereni, the hero or 
armored shrew, is highly derived in both morphology and numeri-
cal composition, with an extremely rigid, buttressed thoracolumbar 
vertebral column19,84–87. Selection for spinal strength for leveraging 
heavy or compressed objects during foraging has been proposed to 
explain the rigidity of the armoured shrew spine87.

Furthermore, we found suspensory behaviour and other  
antipronograde positional behaviours to be associated with 
increased variation in numbers of presacral vertebrae compared 
to non-suspensory, quadrupedal taxa (Analyses 6–8,10; Table  1). 
Suspensory and quadrumanuous slow-climbing, bridging and canti-
levering mammals are amongst those with a dorsostable spine54,55,58–

60,64,65,67–76 and represent many of the highly variable taxa in our study. 
Given the convergence on high variation in presacral numbers of 
vertebrae and divergence from the primitive number of presacral  
vertebrae in extant apes, tree sloths, lorisids and other taxa (Fig. 3), 
we propose that adaptation to antipronograde positional behav-
iours reduced biomechanical and developmental constraints on 
presacral numbers of vertebrae in these lineages: mammals in these 
clades do not increase stride length during running and leaping by  
flexing and extending the spine as do dorsomobile runners36,48,50, 
resulting in populations that can evolve atypical vertebral formu-
lae through subsequent selection or genetic drift. High morpho-
logical heterogeneity indices tend to be found in species that deviate  
from the common mammalian pattern of 26 or 27 presacral  
vertebrae (Fig. 3).

A rigid lumbar column that contributes minimally to flexion 
and extension of the spine is released from stabilizing selection 
for dorsomobility of the vertebral column in typical mammalian 
locomotion, allowing for greater variation in regional and total pre-
sacral numbers of vertebrae. While adaptation to antipronogrady 
is identified here as one source of dorsostability that resulted in 
increased variation in presacral numbers of vertebrae in mammals, 
other adaptive and potentially neutral factors should be considered. 
Dorsostability has evolved in other contexts (discussed above) and 
is frequently associated with increased variation in presacral num-
bers of vertebrae. Additionally, although our habitat analysis did not 
find major differences in aquatic, volant or fossorial taxa, this might 

be attributed to limited sample sizes and therefore limited statistical 
power in this analysis. Cetaceans and chiropterans are both highly 
variable in numbers of presacral vertebrae88,89 and, like many anti-
pronograde species, have clearly evolved derived body plans distinct 
from typical cursorial and scansorial mammals. Population-related 
evolutionary dynamics that might affect variation in vertebral num-
bers (for example, ref. 90) also need to be considered. Work on man-
atees and tree sloths, species that possess atypical cervical counts, 
has advanced our understanding of cervical stasis7,23,79,91,92. Focus on 
species that vary highly in thoracolumbar and other regional verte-
bral counts (see Fig. 1) will shed light on the evolutionary processes 
that have produced mammalian vertebral patterning and driven 
large-scale stasis in presacral numbers of vertebrae.

Methods
Data on vertebral numbers were sourced from US and European museum 
collections (see Acknowledgements) using criteria established by Schultz37:  
cervical vertebrae lack ribs that articulate with the sternum; thoracic vertebrae 
possess ribs and bear rib facets bilaterally; lumbar vertebrae lack ribs and rib 
facets, including ankylosed (fused) ribs; and sacral vertebrae are defined as those 
contributing to sacral foraminae. ‘Intermediate’ vertebrae are recorded as half-
counts, so that, for example, a vertebra at the thoracolumbar border bearing a rib 
on one side and not on the other is recorded as 0.5 thoracic, 0.5 lumbar. These 
criteria are used to obtain a total presacral count for each specimen (Supplementary 
Table 1). An additional ‘functional definition’ of thoracic and lumbar vertebrae  
(in contrast to the ‘costal definition’ just described), which is based on the 
orientation of the zygapophyses38,93, was also employed. The vertebra with  
coronally oriented (thoracic-like) superior zygapophyseal articular facets and 
sagitally oriented (lumbar-like) inferior zygapophyseal articular facets was 
identified as the transitional or diaphragmatic vertebra, and demarcates pre- and 
post-transitional (or pre- and post-diaphragmatic) vertebrae36,40,60,94,95. Along with 
other information, the number of pre- and post-transitional vertebrae was used to 
categorize taxa into dorsomobile and dorsostable categories (see below). However, 
these alternative definitions do not affect the total presacral count, which is the 
focus of this study.

In addition to the data collected in this study, two additional data sources  
were used. Data compiled and collected by Pilbeam18 follow the criteria outlined 
above37 and were combined with our data, with repeated specimens removed  
(see ref. 96). Data on three additional taxa, the manatee (Trichechus) and two 
cetaceans (Caperea and Lagenorhynchus), were included from Buchholtz91,97. As in 
other fully aquatic taxa the sacrum has been lost, rendering the criteria discussed 
above ineffective in differentiating lumbar and caudal vertebrae. Instead, these 
regions were differentiated by Buchholtz and colleagues80,91,97 using the presence of 
chevron bones on the caudal vertebrae.

We pooled taxa at the genus level when species in the same genus were found 
not to differ in modal numbers of presacral vertebrae. In some cases, differences in 
modes did not allow for pooling at the genus level, and those species were treated 
separately (for example, G. gorilla and G. beringei). In three cases (hippopotamuses, 
rhinoceroses and elephants), we combined closely related genera that did not differ 
in modal presacral count to adequately sample and include Hippopotamidae, 
Rhinocerotidae and Elephantidae in our analyses. Our total sample consisted 
of 7,162 specimens representing 155 taxa (Supplementary Table 1). Domestic 
mammals were not included in our analyses due to potential effects of artificial 
selection (for example, work in ref. 98) on presacral metric variation.

The morphological heterogeneity index18,20,96, analogous to measures of gene 
diversity, was used to quantify intra-specific variation: 



∑ = −

fi
n

i
n

n1
2

1
 where f is the 

frequency of finding a single presacral count in a population and n is sample size. 
The morphological heterogeneity index is calculated per species and can range 
from 0 (an invariant count across specimens sampled) to 1 (a different count 
observed for each specimen). It is a better measure of variation in meristic data 
than the coefficient of variation because it is designed for qualitative data, it is not 
influenced by the size or scale of data (that is, low or high numbers of vertebrae) 
and a sample size correction99 renders it more effective than simple frequencies.  
To adequately sample intra-specific variation, only species represented by at least 
ten individuals were included in our analyses although the mean (46) and median 
(20) sample sizes were substantially greater than ten.

For analyses of speed, maximum running speed records and average body 
mass data were taken from the published literature100–102. Phylogenetic least squares 
(PGLS) regressions were carried out on running speed and average body mass 
per species using a mammalian supertree103. The relationship between running 
speed and body mass has been shown to shift between a positive relationship and a 
negative one, with the slope transitioning at a body mass ~30 kg (ref. 101). Therefore, 
two separate PGLS regressions were conducted, one on mammalian species 
with an average body mass ≲30 kg (n = 96) and another on mammalian species 
with an average body mass ~30 kg or greater (n = 71) (Supplementary Table 3). 
Standardized residuals were calculated (PGLS residual/residual standard error) for 
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each analysis, and their median was used to demarcate fast and slow taxa. A third, 
intermediate category was introduced using the 1st and 3rd quartiles as guides  
(see Supplementary Table 3).

Taxa in the vertebral number dataset were assigned categories based on these 
results, and additional taxa not represented in the PGLS dataset were added based 
on two criteria: (1) if they have close relatives of similar size and presumed speed 
represented in the PGLS dataset (for example, two-toed sloths were considered 
slow because three-toed sloths were categorized as slow); and/or (2) if they were 
included and categorized in a speed category in Galis et al.34. (Supplementary 
Table 1). A series of phylogenetic ANOVA tests104 based on speed were then 
performed (Table 1): fast and slow (Analysis 1); fast, intermediate and slow 
(Analysis 2); and fast and slow amblers and runners (not including antipronograde 
taxa) (Analysis 3). In Analysis 3, only terrestrial and arboreal quadrupedal taxa 
were included (that is, antipronograde and aquatic taxa were excluded), which is 
more directly comparable to the dataset in ref. 34 (Table 1).

Subsequent phylogenetic ANOVAs were conducted to test the hypotheses that 
the following factors explain variation in numbers of presacral vertebrae: habitat 
(arboreal, terrestrial, fossorial, aquatic; Analysis 4); body posture (upright versus 
non-upright; Analysis 5); suspensory or otherwise antipronograde behaviour 
(Analysis 6); limb and tail use (general quadrupedalism, bipedalism, suspensory 
behaviour, digging, swimming; Analysis 7); broad locomotor modes (run-
leap, amble, slow climb–suspend, other; Analysis 8); vertebral contribution to 
locomotion (dorsomobile versus dorsostable spines; Analysis 9); and dorsomobile 
versus dorsostable activities (dorsomobile locomotion, dorsostable running, 
antipronogrady; Analysis 10). The categories used in Analyses 4–7 to classify 
mammals are based on descriptions and accounts in various published sour
ces36,49,50,105–109.

For Analysis 5, we classified bipeds and mammals that habitually hold their 
body in orthograde posture as upright (and those that do not as non-upright) 
(Supplementary Table 1). For Analysis 6, we define antipronograde positional 
behaviours as those in which the limbs are held in tension during suspension, 
cantilevering and quadrumanuous slow climbing, including clambering and 
bridging110. Mammals that do not typically engage in antipronograde activities are 
classified as ‘not antipronograde’ (as opposed to pronograde, to avoid confusion). 
We do not fully adhere to the original definitions of the terms orthograde and 
pronograde, because these were applied only to arboreal mammals (and primates 
specifically) and used to emphasize the orientation of the body relative to the 
plane of movement (that is, the branch)77,111. Applying that definition to sloths, 
for example, would result in their classification as both antipronograde and 
pronograde (since their bodies are held parallel with the plane of movement; that 
is, they are inverted quadrupeds112,113). For Analysis 7, we include in our suspensory 
category mammals that engage in occasional suspension (for example, using the 
hind limbs and/or a prehensile tail). Some of these taxa (for example, howler 
monkeys, tamanduas, kinkajous) are not classified as antipronograde in other 
analyses because they habitually carry their bodies prone to the ground while 
terrestrial and as above-branch quadrupeds when arboreal.

Categories for Analysis 8 used our speed results in addition to the published 
accounts of positional behaviour and other activities (that is, slow-speed mammals 
were classified as amblers whereas fast-speed mammals were classified as runners/
leapers). The antipronograde category from Analysis 6 and the suspensory 
category from Analysis 7 were combined, along with upright arboreal taxa 
(for example, koalas) in Analysis 8 (as slow climb–suspend). Volant taxa were 
excluded from the slow climb–suspend category and combined with aquatic and 
fossorial taxa and together are classified as ‘other’ in Analysis 8. In Analysis 9, 
mammals were classified as dorsostable (versus dorsomobile) if they met one of 
two criteria: (1) the numerical composition of the lumbar and/or post-transitional 
column is short compared to total thoracolumbar count (<30% for lumbar 
vertebrae, <40% for post-transitional vertebrae; see Supplementary Table 1); or 
(2) taxa are discussed in the literature as having musculoskeletal adaptations to 
dorsostability19,34,54,55,58–60,63–65,67–75,82–87,113–116. In Analysis 10, taxa were classified into 
the categories dorsomobile quadrupedal, dorsostable slow climbing-suspensory 
and dorsostable terrestrial quadrupedal (excluding bipeds and taxa in the ‘other’ 
category from Analysis 8) (Supplementary Table 1).

We based P values for the phylogenetic ANOVAs on a comparison of the 
F-statistic of the observed data and a distribution of F-statistics for simulated 
data under Brownian motion104. One million iterations were conducted to build 
the distribution of simulated F-statistics for each analysis using the phytools 
package in R (ref. 117). Reported P values were post hoc adjusted for multiple 
comparisons using Holm’s sequential Bonferroni. We further adjusted our alpha 
level for statistical significance by correcting for the number of analyses we ran 
(0.05/10 = 0.005).

For visualization purposes, we carried out ASR of numbers of presacral 
vertebrae and their calculated morphological heterogeneity indices using a 
Brownian motion model. We did not interpret the ASR results as accurate 
estimations of ancestral states for deep nodes and stems, as we did not sample the 
key taxa that would be necessary for such a study. Rather, we carried out ASR to 
highlight clear cases of deviation from modal numbers of presacral vertebrae and 
high variation in extant taxa. For both the ASR and phylogenetic ANOVAs, we 
used the mammalian supertree from Bininda-Emonds et al.103.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data analyzed in this study and related data are included in Supplementary 
Tables 1–3.
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