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SUMMARY
Early-life microbial colonization is an important process shaping host physiology,1–3 immunity,4–6 and long-
term health outcomes7–10 in humans. However, our understanding of this dynamic process remains poorly
investigated in wild animals,11–13 where developmental mechanisms can be better understoodwithin ecolog-
ical and evolutionarily relevant contexts.11,12 Using one of the largest developmental datasets on a wild
primate—the gelada (Theropithecus gelada)—we used 16S rRNA amplicon sequencing to characterize gut
microbiota maturation during the first 3 years of life and assessed the role of maternal effects in shaping
offspring microbiota assembly. In contrast to recent data on chimpanzees, postnatal microbial colonization
in geladaswas highly similar to humans:14microbial alpha diversity increased rapidly following birth, followed
by gradual changes in composition until weaning. Dietary changes associated with weaning (from milk- to
plant-based diet) were themain drivers of shifts in taxonomic composition andmicrobial predicted functional
pathways. Maternal effects were also an important factor influencing the offspring gut microbiota. During
nursing (<12 months), offspring of experienced (multi-time) mothers exhibited faster functional microbial
maturation, likely reflecting the general faster developmental pace of infants born to these mothers.
Following weaning (>18 months), the composition of the juvenile microbiota tended to be more similar to
the maternal microbiota than to the microbiota of other adult females, highlighting that maternal effects
may persist even after nursing cessation.15,16 Together, our findings highlight the dynamic nature of early-
life gut colonization and the role of maternal effects in shaping this trajectory in a wild primate.
RESULTS

Early-life gutmicrobiota colonization varies across individuals17–24

and is shaped by maternal microbial ecology.24–29 In mammals,

direct vertical transmission of maternal microbial lineages occurs

at birth24–27,30,31 and continues as infants ingest milk microbes

during lactation27,32,33 and acquire maternal gut and skin mi-

crobes through body contact.34,35 Maternal milk glycans further

influence the colonization of offspring microbial communities by

promoting the growth of beneficial microbes (e.g., Bifidobacte-

rium and Bacteroides) that influence infant nutrition and immu-

nity.36–38 Given such vertical transmission of microbes and

microbe-promoting factors (i.e., milk glycans), mothers with
4508 Current Biology 32, 4508–4520, October 24, 2022 ª 2022 Elsev
varying physical and social backgrounds may differentially

influence offspring gut microbiota, resulting in maternal ef-

fects.28,39–41 Indeed, maternal effects on offspring development,

survival, and physiology are well documented, with poor maternal

condition,42–44 maternal inexperience (i.e., parity),45–50 and low

maternal dominance rank47,50–54 often negatively impacting

offspring development and fitness. In captive vervet monkeys,

maternal effects on the offspringmicrobiomehavealsobeen iden-

tified: during lactation, first-time mothers vertically transmitted

more bacteria that process milk, promoting faster postnatal

growth in offspring and compensating for poor milk production.55

These results suggest that variation in vertical transmission may

be a key feature impacting offspring development and
ier Inc.
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Figure 1. Gut microbiome taxonomic assembly in the first 3 years of life in immature geladas

(A) Relative abundance of the 15 and 19 most abundant phyla and families per age category.

(B) Age-associated pattern of alpha diversity (Shannon index of ASVs) within samples. The dotted vertical line represents the critical point of inflexion (7.3months,

95% CI = [6.4–8.2] in shaded gray, nonlinear quadratic plateau model [QPM]: R2 = 0.62) representing the age at which alpha diversity converges to adult-like

patterns. Immatures are considered ‘‘weaned’’ when their mother has resumed reproductive cycles. The dataset was rarefied at 20,000 reads for the figure.

(C) Age-associated pattern of beta diversity. A principal component analysis (PCA) was used to ordinate samples based on the Aitchison dissimilarity index.

(C) represents the projection of the first principal component (PC1) that is best explained by the age of immatures. The dotted vertical line represents the critical

point of inflexion (17.2 months, 95% CI = [15.5–19.4] in shaded gray, nonlinear QPM between PC1 and age: R2 = 0.55) representing the age at which immatures

beta diversity (i.e., overall composition) converges to adult-like patterns.

(legend continued on next page)
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survival.39,40,55,56 Additionally, mothers may influence offspring

gut microbiota indirectly through their shared social and physical

environment.34,57,58 However, while direct and indirect maternal

effects on the developing gut microbiome are an understudied

and overlooked mechanism impacting developmental plasticity

in offspring,39,40,56 our understanding of these maternal effects

has been largely limited to findings from humans59–63 and captive

animals.55,64–68 Only a handful of studies from wild populations

exist—all of which have limited sampling of infants.14,16,69

Here, we characterized early-life gut microbiota development

in a wild primate—the gelada (Theropithecus gelada)—and

investigated if maternal effects shape offspring gut microbiota

assembly. Using 16S rRNA amplicon sequencing, we generated

the largest gut microbiome dataset of immature (i.e., infant or

juvenile) individuals in a wild, nonhuman mammal, including

cross-sectional and longitudinally collected fecal samples from

89 immature geladas during the first 3 years of life (n = 525 sam-

ples; 5.9 ± 5.5 per individual, range: 1–18; Figure S1A). We sub-

sequently examined if immatures shared more gut bacteria with

their mothers than with other adult females of their social group

and whether such similarities varied across development (i.e.,

pre- versus post-weaning). Fecal-fecal comparisons are ex-

pected to partly capture milk vertical transmission in early life,

because microbes that colonize the mammary gland likely orig-

inate from the female’s gastrointestinal tract (‘‘enteromammary

pathway’’32,70). While 16S data lack the taxonomic resolution

to infer direct vertical transmission,25,26,29–31 more similar in-

fant-mother gut microbiota while infants are still nursing would

likely reflect greater mother-offspring microbial transfer through

milk and/or body contact. This is more likely for geladas due to

core social groups having highly overlapping home ranges,71 a

reliance on a homogenous grass-based diet,72 and the existence

of strong mother-offspring social bonds,73 which may dampen

the role of shared mother-offspring environments in generating

strong maternal-offspring similarities prior to weaning. Finally,

we investigated whether maternal attributes (such as dominance

rank or parity) altered the development of the infant gut micro-

biota. We predicted that immature geladas born to resource-

limited mothers (low-ranking or primiparous74,75) would harbor

an early-life microbiome better equipped to digest milk to

compensate for poorer maternal energetic allocation during

lactation—similar to recent findings in vervet monkeys.55

Gut microbiome diversity during development
We identified 3,784 amplicon sequence variants (ASVs) from 19

phyla and 76 families across 525 samples (mean ± SD ASVs per

sample: 728 ± 261, range: 65–1,498). Gut microbiome composi-

tion changed quickly after birth (Figure 1A). Alpha diversity (i.e.,

within-sample diversity) increased rapidly with age (Shannon
(D) Number of shared ASVs betweenmothers and offspring (n = 398matched pairs

and immatures from the same social group (n = 761 pairs of fecal samples collecte

(14.6 months, 95% CI = [11.8–18.2] in shaded gray for mother-offspring pairs and

pairs, nonlinear QPM: R2 = 0.36 in both cases) representing the age at which t

normalized using cumulative sum scaling (CSS) transformation.

(E) Age distribution of inter-individual variability in gut microbiomes of immatures

distinct gut microbiome from the immature cohort. The dotted vertical line repres

gray, nonlinear QPM: R2 = 0.43) representing the age at which inter-individual

transformation prior to calculation.

See also Figure S1 and Data S1.
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index: generalized additive mixed model [GAMM]: effective de-

grees of freedom [edf] = 8.1, p < 2.0310�16; Data S1A),

converging to adult-like levels at 7.3 months of age (95% confi-

dence interval [CI] = [6.4–8.2]; Figures 1B, S1B, and S1C). Age

was the strongest predictor of the differences in microbial

composition among immature samples (Aitchison b-diversity

PERMANOVA: R2 = 0.74, p = 1.0310�04; Data S1B), with sam-

ples clustering tightly by age on the first principal component

of Aitchison b-diversity (first principal component [PC1]; Pear-

son’s Rage,PC1 = 0.62, p < 2.2310�16; Figure 1C). Compared to

alpha diversity, beta diversity reached adult levels later in devel-

opment at 17.2 months (95% CI = [15.5–19.4]; Figure 1C), which

matches the mean age at weaning defined by the mother’s

resumption of reproductive cycles.76

As offspring got older, they shared an increasing number of

ASVs with their mothers (GAMM, effect of immature age: edf =

4.5, p < 2.0310�16; n = 398 mother-offspring pairs sampled

within one day of each other; Data S2A; Figure 1D), plateauing

at 14.6 months (95% CI = [11.8–18.2]; Figure 1D) when similar-

ities cease to increase further. Immatures also become more

similar in composition to their mother as they aged (pairwise

b-diversity dissimilarity between mother-offspring pairs; Data

S2A; Figure S1D), converging toward an adult-like microbiome

at 15.2–17.2 months (Figure S1D). This pattern of maturation

was similar when comparing immatures to other adult females

(Figures 1D and S1D). Despite these strong developmental tra-

jectories, there was substantial inter-individual variability in

microbial composition in early life: gut microbiota were more

individualized prior to �18 months of age (95% CI = [14.9–

22.5]; Figure 1E), with a few �3–6-month-old infants harboring

gutmicrobiota that were typically found inmuch older immatures

(Figure 1C).

Taxonomic and functional changes reflect nutritional
shifts during development
We characterized age-associated changes in the abundance of

microbial taxa (families or genera) and in functional profiles

based on predicted metabolic (Kyoto Encyclopedia of Genes

and Genomes [KEGG] orthologs [KOs]) and enzymatic (Enzyme

Commission [EC] numbers) microbial pathways inferred using

Phylogenetic Investigation of Communities by Reconstruction

of Unobserved States 2 [PICRUSt2].77 Most microbial taxa

(96% of families and 91% of genera) and predicted functional

pathways (89%–91% of KOs and 93% of ECs) exhibited signifi-

cant changes in abundance with age (autoregressive integrated

moving average [ARIMA]models; Data S3). Taxa (Figures 2A and

S2A) and pathways (Figures 2B, S2B, and S3A) with similar age

trajectories were subsequently grouped into four different clus-

ters, each characterized by a distinct temporal colonization
of fecal samples collected on the same or next day) and between non-mothers

dwithin 20 days). The dotted vertical line represents the critical point of inflexion

15.3 months, 95% CI = [13.4–17.9] in shaded gray for non-mother-immature

he number of shared ASVs stabilizes to its maximal value. The dataset was

using weighted UniFrac distance. Higher ‘‘uniqueness’’ values indicate a more

ents the critical point of inflexion (18.0 months, 95% CI = [14.9–22.5] in shaded

variation reaches adult-like values. The dataset was normalized using CSS



Figure 2. Age-associated changes in microbial composition and predicted functional profile in geladas

(A and B) Heatmaps of the (A) microbial genera and (B) predicted KEGG orthologs metagenomes (KO level 3) exhibiting a significant chronological trend as a

function of age (fitted values from ARIMA models and predicted using locally estimated scatterplot smoothing (LOESS) regression per taxa or pathway). Values

represent Z score normalized counts after centered-log-ratio (clr) transformation for genera and relative abundance transformation for pathways. Hierarchical

clustering was used to group these age-dependent trajectories into four clusters exhibiting similar chronological trends. Color bar on the left side represents the

delimitation of the clusters. Taxa or pathways (i.e., rows) are ordinated on the heatmap using correlation as distance function. The full list of taxa and pathways in

each cluster can be found in Data S3.

See also Figures S2 and S3 and Data S3.

ll
Report
pattern (Data S3). These four microbial clusters succeeded and

replaced each other during development, reflecting progressive

nutritional shifts from a milk-dominant to plant-dominant diet

(Figure 3).

Many of the early colonizers of the gelada gut (cluster 1;

Figures 2A, 3A, and S2A; Data S3A and S3B) were similar to

the coremicrobial taxa found in humannewborns (reviewed inMi-

lani et al. [2017]2), including milk glycan degraders (Bifidobacte-

rium and Bacteroides),2,78–80 lactose degraders and fermenters

(Streptococcus and Veillonella),81 keystone saccharolytic and

short-chain fatty acids producers (Lachnoclostridium, Blautia,

Faecalibacterium, Butyricicoccus, and Butyricimonas),2,81–83

and mucin degraders involved in activating the host immune

system and intestinal barrier function (Akkermansia, Ruminococ-

cus gnavus, and R. torques) (Figures 3A and S2C).84,85 At the

ASV level, we found that Bacteroides fragilis (a milk glycan

degrader78,86) and Ruminococcus lactaris (a lactose fermenter87)

were highly abundant in the youngest infant samples (FigureS2D).

Functional analyses (Figures 2B and S2B; Data S3C and S3D)

similarly revealed that the early-life gut microbiome contained

high levels of bacterial genes involved in carbohydrate meta-

bolism (e.g., degradation of milk sugars:88 fructose, mannose,

andgalactose) and the conversionof sugars to energy (Figure 3B).

The early-life microbes also encode key enzymes necessary to

cleave complex milk glycans, including glucosidase, galactosi-

dase, fucosidase, sialidase, and beta-hexosaminidase (Fig-

ure S3A; Data S3E).2,37,79,86,89 Bacteroides—the most abundant
genus in early life (Figures 3A and S2C)—was the main microbial

group encoding these enzymes (Figure S3B), highlighting its cen-

tral role inmilk glycan degradation in geladas. By contrast,Bifido-

bacterium—the main glycan degrader in humans90,91—was rare

in the developing gelada gut (Figure S2C; <0.01% at 1 month in

geladas versus �40% in humans29).

As typically found in human newborns,20,21,25 the early-life ge-

lada microbiome contained a higher proportion of oxygen-

tolerant genera compared to later-life microbiomes (cluster 1

had 18%, while later-life clusters 2, 3, and 4, described below,

contained 3.8%, 0%, and 1.5% facultative anaerobes or aer-

obes; Data S3B). This early-life cluster was further characterized

by a high number of potentially pathogenic bacterial groups,

including oxygen-tolerant (Actinobacillus, Escherichia-Shigella,

Helicobacter and Mannheimia) and anaerobic (Hungatella, Eg-

gerthella, Clostridioides and Clostridium sensu stricto 1) genera

(Figure S2C; Data S3B), some of which cause disease and diar-

rhea in human newborns and captive animals (C. difficile,

C. butyricum and perfringens and H. macacae).92–96 In line with

this, the early-life microbial metabolic pathways were also

more involved in processes related to the host immune system

(Data S3C and S3D).

Around 10 months of age (i.e., 5–7 months before nursing

cessation), there was an important compositional and functional

rearrangement of the gelada gut microbiota, characterized by a

small number of taxa andmetabolic pathways peaking (cluster 2;

Figures S2A and S2B) or decreasing (cluster 3; Figures S2A and
Current Biology 32, 4508–4520, October 24, 2022 4511



Figure 3. Composition and predicted functions of the gut microbiome in early life, at the weaning transition, and in later life in geladas

(A) Relative abundance of representativemicrobial genera in early life (cluster 1) and at theweaning transition (clusters 2 and 3) and of microbial families in later life

(cluster 4), as a function of age. The age-dependent trajectories were calculated on clr-transformed counts, but here for visualization purposes, we represent the

LOESS regression on the raw relative abundance across samples. Relative abundance is represented on a log scale to accommodate high and low abundance

genera together.

(B) Relative abundance of representative predicted KEGG metabolic pathways enriched in early life (cluster 1, KO3), during the weaning transition (clusters 2

and 3, KO3), and in later life (cluster 4, KO2). In all plots, the average curve is the LOESS regression on the raw relative abundance across samples.

See also Figures S2 and S3 and Data S3.
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S2B) in abundance (Data S3). Bacteroides became much less

abundant, while other taxa—such as Lactobacillus, Prevotella,

and several genera from the Lachnospiraceae family—became

more abundant (cluster 2; Figure 3A; Data S3A and S3B). Lacto-

bacillus is a keystone lactic acid bacterial family producing large

amounts of lactate from milk sugars,80,97 but Prevotella and
4512 Current Biology 32, 4508–4520, October 24, 2022
Lachnospiraceae are fiber-degrading genera.98,99 These tran-

sient shifts highlight the role of the gut microbiota in digesting

both milk and plant items at this age. Taxonomic changes

were also accompanied by important predicted functional

changes, including remodeling of amino acid metabolism, vita-

mins, and cofactors (Figure 3B; Data S3C and S3D).



Figure 4. Maternal effects on offspring’s gut microbiota in early and later life
(A and B) Results of the nonparametric resampling approach testing if offspring sharemore amplicon sequencing variants (ASVs) with their mother thanwith other

adult females of their social group (considering all maternal and non-maternal samples collected 0–20 days apart from immature samples). Analysis was per-

formed separately on (A) young nursing infants (aged 0–12 months, n = 127 samples) and (B) old immatures (>18 months, n = 193) that were likely weaned. The

histograms show the distribution of the metric for non-mother-immature pairs (with 5,000 repetitions). The vertical line shows the value of the metric for mother-

offspring pairs (averaged across 5,000 repetitions).

(C) The gut microbiota of infants (<12 months) born to primiparous females is characterized by a higher abundance of several KEGG pathways (level 3) related to

milk digestion, which are typically observed in early life (see cluster 1 of Figure 3B and Data S3D).

(D) By contrast, the gut microbiota of infants (<12 months) born to multiparous females has higher abundance of KEGG pathways (level 3) related to plant-

fermentation, which are typically observed in later life (see cluster 4 of Figure 3B and Data S3D).

(E) In early life (0–12 months), infants born to primiparous females share fewer ASVs with their mother compared to offspring born to multiparous females, but this

pattern disappears later in life (>18 months).

(legend continued on next page)
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Later in development, when immatures begin to eat grami-

noids (e.g., grasses),72 there was a rapid increase in microbes

that metabolize plant complex polysaccharides, which pla-

teaued by 10 months of age (cluster 4; Figures 2A, S2A, and

3A; Data S3A and S3B). This included cellulolytic (Spirochaeta-

ceae, Fibrobacteraceae, and Cellulosilyticum)98,100,101 and

fermentative taxa (Lachnospiraceae, Clostridiales Family XIII,

Prevotellaceae, and Ruminococcaceae),98,99 as well as RFP12

(Figure 3A), all of which are commonly found in the adult gelada

gut.102 Functional profiles also typically converged toward an

adult gelada pattern,102 withmore bacterial genes involved in en-

ergy, amino acid, and lipid metabolism, and the regulation of ge-

netic expression and bacteria growth (cluster 4; Figure 3B; Data

S3C and S3D).

Mother-offspring similarity in gut microbiome
composition during development
We next examined mother-offspring gut microbiome similarity

and determined if such similarities varied in strength from the

pre- to post-weaning period. We used nonparametric resam-

pling tests (n = 5,000 resampling iterations) to compare the num-

ber of shared ASVs and beta diversity dissimilarity values be-

tween mother-offspring pairs (n = 510 possible pairs) and

random non-mother adult female-immature pairs drawn from

the same social group (n = 1,587 possible pairs), with all pairs

collected within 20 days of each other (see STAR Methods). In

the overall dataset, immatures shared significantly more ASVs

with their mothers (n = 510 samples; �1.5% more ASVs, mean

ASVs shared between mother-offspring = 459, non-mother-

immature = 452, p = 0.02) and were 1.2% (weighted UniFrac

dissimilarity between mother-offspring = 5.2310�2, non-

mother-immature = 5.3310�2, p = 0.05) more similar composi-

tionally to their mothers than to another adult female in the

same group sampled around the same time (Data S2B). Howev-

er, this effect was not statistically significant in the youngest in-

fants with a primarily milk-based diet (n = 126 samples

<12 months: mean ASVs shared between mother-offspring =

321, non-mother-immature = 322, mean difference = 2.3, p =

0.41; weighted UniFrac dissimilarity between mother-offspring =

6.8310�2, non-mother-immature = 6.8310�2, p = 0.65;

Figures 4A and S4A; Data S2B) but was significant in older imma-

tures that likely rely more on solid foods and less onmilk (n = 193

samples >18 months: number of shared ASVs between mother-

offspring = 533, non-mother-immature = 521, p = 0.01 and

weighted UniFrac dissimilarity between mother-offspring =

4.4310�2, non-mother-immature = 4.5310�2, p = 0.03;

Figures 4B and S4B; Data S2B). Note that this pattern of

mother-offspring similarity in old juveniles did not remain statis-

tically significant when the dataset was subset to the same size

as the young infant dataset (see STAR Methods) or when a more

stringent matching criteria of maternal and non-maternal pairs

collected within 10 days (rather than 20 days; Data S2B) was
(F) Relative abundance (log transformed) of the shared ASVs between mother-of

dyad (primiparous vs multiparous). A subset of ASVs were classified as typically

Figure S2D) versus typically observed in later life (i.e., those with a loading score >

pairs (e.g., among >70%of the pairs) are typically those found in later life (‘‘early-lif

true for both primiparous and multiparous dyads.

See also Figure S4 and Data S2 and S4.
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applied. Nevertheless, the effect size of pair identity (mother-

offspring versus not) remained the same, suggesting greater

mother-offspring similarity after, rather than before, nursing

cessation. Importantly, sharing maternal-offspring sharing of

gut microbes at this later life stage is likely mediated by non-

nursing interactions following weaning.

While there was no evidence that mother-offspring pairs

shared significantly more microbes than expected by chance

in the pre-weaning period, we hypothesized that vertical

transmission might specifically involve taxa specialized in pro-

cessing milk (especially milk glycan degraders such as Bifido-

bacterium and Bacteroides), which are not common in adult

geladas102 and therefore less likely to be environmentally or

socially acquired. Contrary to our expectations, the shared

bacterial community between mother-offspring dyads during

the nursing period (<12 months) was not specific to early-life

microbes that are likely functionally important to processing

milk but instead belonged to the typical adult microbiome of

geladas that are likely involved in grass digestion (Figure S4C).

Collectively, (1) the lack of similarity with the maternal micro-

biota during the nursing period and (2) the predominance of

adult-like microbes in the ASVs that were shared suggest

that 16S fecal-fecal comparisons do not adequately capture

vertical transmission through nursing.

Maternal parity influences predicted functional
microbial profiles of their offspring
Despite our inability to detect early-life vertical transmission us-

ing 16S data, we might still be able to measure the phenotypic

consequences of maternal environmental variation on offspring

gut microbiota during development. We tested whether two

maternal attributes—maternal rank and parity—predicted

offspring gut microbiome composition and function (using all

immature samples; n = 525). Maternal dominance rank did not

predict alpha or beta diversity (Data S1A and S1B) nor the abun-

dance of any microbial taxa or predicted functional pathway of

offspring (Data S4 for <12 months; results not shown for

>18 months). Maternal parity was also not associated with

offspring alpha diversity but explained �0.3% of the variance

in beta diversity between immatures (Data S1A; Figure S4D).

At the taxonomic level, parity was not associated with the abun-

dance of any microbial families or genera (Data S4A and S4B for

<12 months; results not shown for >18 months). Nonetheless,

several milk-relatedmicrobes exhibited a trend to bemore abun-

dant in infants (<12 months) born to primiparous mothers (Fig-

ure S4E; Data S4A and S4B; see p values before false discovery

rate [FDR] correction). At the functional level, parity was associ-

ated with the abundance of several predicted metabolic and

enzymatic pathways but only in the first 12 months of life (Data

S4C and S4D). Specifically, the gut microbiota of nursing infants

(<12 months) born to primiparous females was enriched

in carbohydrate pathways (galactose, fructose, and mannose
fspring pairs during the first 12 months of life according to parity status of the

observed in early life (i.e., those with a loading score < �0.025 on PC1; see

0.04 on PC1). The ASVs that are commonly shared between mother-offspring

e’’ ASVs are not universally shared betweenmother-offspring dyads), and this is
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metabolism; Figure 4C; Data S4C and S4D) and enzymes (Fig-

ure S4F; Data S4E) directly involved in milk digestion and

belonging to the early developmental period (i.e., cluster 1 in

Figures 3B and S3B). By contrast, nursing infants (<12 months)

born to multiparous females had a more functionally ‘‘mature’’

gut microbiota for their age, with a higher abundance of path-

ways involved in amino acid and nucleotide metabolisms (Fig-

ure 4D; Data S4C and S4D) typically belonging to the later life

cluster (cluster 4 in Figure 3B).

Despite the effect of maternal parity on predicted microbial

functions during the weaning period, we found that infants of pri-

miparous females shared fewer ASVs (b = �99.2, p = 9.0310�3;

Figure 4E; Data S2A) and were more dissimilar to their mother

(weighted UniFrac: b = 7.9310-2, p = 0.05; Data S2A) in the first

12 months of life compared to infants of multiparous females.

However, this effect of greater dissimilarity in primiparous-infant

dyads disappeared later in life (>18 months of age) when the ef-

fect of maternal parity was no longer detected (number of shared

ASVs: b = 2.13, p = 0.92, weighted UniFrac: b = 8.5310�2, p =

0.73; Figure 4E; Data S2B). Furthermore, similar to the pattern

for all females, the shared ASVs between infants and primipa-

rous mothers during the nursing period (n = 21 pairs) did not

belong to the typical early-life ASVs focused on digesting milk

but rather to adult-like ASVs associated with a grass-based

diet (Figure 4F). Taken together, these results suggest that

despite maternal parity effects on the function of the early-life

gut microbiome, they are not strongly mediated by differences

of shared microbes between primiparous versus multiparous

dyads as detected using 16S fecal-fecal comparisons of

mother-infant dyads.

DISCUSSION

The dynamics of microbial colonization in geladas shares many

similarities with patterns previously reported for humans18,21,24

and other mammals55,103,104 (but see Reese et al. [2021]14). First,

gut microbiota composition changed quickly following birth, with

rapid taxonomic diversification and succession during the first

7 months of life, followed by more gradual changes until

�17 months, which corresponds to the age at weaning in gela-

das.76 Thus, similar to humans,21,27,105 the cessation of

nursing—rather than solely the introduction of solid foods—ap-

pears to drive the developing gut microbiome to an adult-like

composition. Second, shifts in gut microbiome composition

and function closely followed progressive dietary transitions:

gut bacteria that facilitate milk glycan and lactose utilization

were dominant during early infancy while cellulolytic and fibro-

lytic bacteria that metabolize plant complex polysaccharides

were dominant later in development as graminoids were pro-

gressively introduced in the diet.72 Many of the early colonizers

of the gelada gut were similar to those found in humans, with

the exception that Bacteroides (specifically B. fragilis) instead

of Bifidobacterium (common in human newborns24,106–108) ap-

pears to be the main group of milk glycan degraders in geladas.

The absence of Bifidobacterium but abundance of Bacteroides

in some nursing infants has in fact been documented in several

human populations19,29,109–111 and some nonhuman mam-

mals.55,103,112,113 Such individual and species-specific differ-

ences in the predominance of Bifidobacterium or Bacteroides
may be linked to their different glycan-use profiles mapping on

to species and individual specific differences inmilk composition

(specifically, the structure and relative abundance of different

milk glycans).114–116

Importantly, our results suggest that early-life gut microbiome

composition and functionmay be influenced bymaternal effects,

both during nursing and after weaning. However, these early

versus later life maternal effects are likely driven by different

mechanisms. During the first 12 months of life when infants

remain heavily reliant on nursing, functional PICRUSt2 analyses

revealed that infants of primiparousmothers harboredmore bac-

teria that were functionally relevant for processing milk sugars.

Previous work on captive vervet monkeys showed that the effect

of maternal parity on microbial function could be explained by

primiparous females transferring more milk-oriented microbes

to their offspring (via milk) to potentially compensate for poor

maternal milk production.55 However, in our study, we did not

find evidence for strong vertical transmission in the youngest

period of life—either for all females or for primiparous females

specifically. In other words, while offspring of first-time mothers

harbored a microbiome abundant in milk-processing taxa, this

abundance was not shared with their mothers. One potential

explanation for these results is that fecal-fecal comparisons

are less reliable for approximating vertical transmission via

milk, and 16S sequencing itself may not have adequate resolu-

tion to identify rare taxa that may be shared.25,26,29–31 In the

absence of milk samples, however, evidence for such mecha-

nisms remains unclear in geladas.

Despite our inability to pinpoint themechanism for this pattern,

we suggest that the more milk-oriented microbiome associated

with first-time mothers could also simply reflect a slower pace of

offspring gut microbiome maturation. By contrast, the greater

similarity between multiparous mothers and their infants may

be generated by accelerated gut microbiome development, sug-

gesting that these infants are undergoing the weaning transition

at a faster pace than their peers. Infants from multiparous fe-

males could be growing faster, gaining nutritional independence

earlier (e.g., start eating grass earlier) and becoming socially in-

tegrated earlier than their similar-aged peers—all of which could

explain why offspring of multiparous females also show greater

microbial resemblance to mothers (and other adults) before

weaning. This interpretation is supported by evidence that pri-

miparous mothers wean their offspring about 5 months later

than multiparous females in our study cohort (multiparous =

17.1 months, primiparous = 21.9 months).

Although there was little evidence for shared microbes prior to

weaning, we found some evidence for greater mother-offspring

similarities in gut microbiome composition after weaning. As

immature gut microbiomes became more similar to adults in

general, offspring were even more similar to their mothers than

expected by chance, a pattern previously documented in other

wild mammals14,16 (but see Moeller et al. [2016]69). Thus, while

parity-associated maternal effects prior to weaning were not

linked to shared microbes, evidence for shared microbes were

identified following weaning, albeit unassociated with any clear

maternal attributes. Maternal-offspring gut microbiome similar-

ities beyond the early postnatal period may be explained by

host genetics, post-weaning vertical transmission via non-

nursing mechanisms, and shared maternal and offspring
Current Biology 32, 4508–4520, October 24, 2022 4515
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environments.35 Indeed, not only is gut microbiome composition

highly heritable15 but transmitted through more frequent social

contacts, shared diets, and shared physical substrates, all of

which are likely to characterize mother-offspring dyads that

reside in the same social group.34,57 Further work is needed to

understand the relative importance of these mechanisms in ex-

plaining mother-infant similarity in gut microbial composition

during juvenility.

Our study comes with a few limitations. First, age differences

in functional profiles in relation to paritymay have been better as-

sessed using an interaction term rather than testing separately

within each age group. However, to account for the non-linear

relationship between age and microbial metrics, we used

GAMMs, which cannot account for interaction terms. Thus, our

models, while optimized for their distribution, were not able to

capture an interaction in the full dataset. Second, our functional

results may be limited because functional pathways generated

from predicted bacterial metagenome profiles are contingent

on how closely ASVs match reference databases. In our devel-

opmental data, the average weighted Nearest Sequence Taxon

Index (NSTI: a measure of how similar bacteria from a sample are

to reference genome sequences) was relatively high (mean ±

SD = 0.49 ± 0.19, range: 0.01–0.89) compared to other mam-

mals,77 suggesting that our functional results should therefore

be interpreted with caution (see further discussion in STAR

Methods). Confidence in our functional analyses is nonetheless

bolstered by the fact that our observed functional changes

were consistent with those that are expected to occur during

development and across dietary transitions. Future studies

incorporating shotgun metagenomic data are needed to confirm

the functional signal of ‘‘immaturity’’ among primiparousmother-

offspring dyads.

Our results demonstrate maternal effects on the early-life gut

microbiome from infancy past the weaning transition in a wild

primate. Maternal parity in particular was associated with

the functional maturation of the microbiome in offspring, likely

reflecting faster developmental pace of infants born to repro-

ductively experienced mothers. As infants age, they converge

toward an adult-like gut microbiome that tends to be more

similar to the maternal gut microbiome than expected by

chance. The long-term consequences of such microbially

mediated maternal effects remain unknown but could poten-

tially influence phenotypic outcomes such as growth and im-

mune function.
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Chakarov, N., Krüger, O., Nichols, H.J., Elorriaga-Verplancken, F.R.,

and Hoffman, J.I. (2020). Early sexual dimorphism in the developing gut

microbiome of northern elephant seals. Mol. Ecol. 29, 2109–2122.

113. Inoue, R., and Ushida, K. (2003). Vertical and horizontal transmission of

intestinal commensal bacteria in the rat model. FEMS Microbiol. Ecol.

46, 213–219.

114. Urashima, T., Odaka, G., Asakuma, S., Uemura, Y., Goto, K., Senda, A.,

Saito, T., Fukuda, K., Messer, M., and Oftedal, O.T. (2009). Chemical

characterization of oligosaccharides in chimpanzee, bonobo, gorilla,

orangutan, and siamang milk or colostrum. Glycobiology 19, 499–508.

115. Urashima, T., Asakuma, S., Leo, F., Fukuda, K., Messer, M., and Oftedal,

O.T. (2012). The predominance of type I oligosaccharides is a feature

specific to human breast milk. Adv. Nutr. 3. 473S-82S.

116. Tao, N., Wu, S., Kim, J., An, H.J., Hinde, K., Power, M.L., Gagneux, P.,

German, J.B., and Lebrilla, C.B. (2011). Evolutionary glycomics: charac-

terization of milk oligosaccharides in primates. J. Proteome Res. 10,

1548–1557.

117. Gohl, D.M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A.,

Gould, T.J., Clayton, J.B., Johnson, T.J., Hunter, R., et al. (2016).

Systematic improvement of amplicon marker gene methods for

increased accuracy inmicrobiome studies. Nat. Biotechnol. 34, 942–949.

118. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-

Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F.,

et al. (2019). Reproducible, interactive, scalable and extensible micro-

biome data science using QIIME 2. Nat. Biotechnol. 37, 852–857.

119. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A.,

and Holmes, S.P. (2016). DADA2: high-resolution sample inference from

Illumina amplicon data. Nat. Methods 13, 581–583.

120. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
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Martı́n-Fernández127
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Other
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data and R code to reproduce the This study https://doi.org/10.5281/zenodo.6984416
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Current Biology 32, 4508–4520.e1–e6, October 24, 2022 e1

mailto:alice.baniel@gmail.com
mailto:alice.baniel@gmail.com
https://geladaresearch.org/
http://www.ncbi.nlm.nih.gov/bioproject/772269
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA639843
https://qiime2.org/
https://benjjneb.github.io/dada2/index.html
https://www.arb-silva.de/
https://www.r-project.org/
https://github.com/picrust/picrust2
https://cran.r-project.org/web/packages/EloRating/index.html
https://www.bioconductor.org/packages/release/bioc/html/phyloseq.html
https://www.bioconductor.org/packages/release/bioc/html/phyloseq.html
https://cran.r-project.org/web/packages/picante/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/zCompositions/index.html
https://cran.r-project.org/web/packages/zCompositions/index.html
https://cran.r-project.org/web/packages/zoo/index.html
https://cran.r-project.org/web/packages/forecast/index.html
https://smack-lab.com/protocols/
https://doi.org/10.5281/zenodo.6984416


ll
Report
Data and code availability

d All 16S sequence data used in this study are available at the NCBI Sequence Read Archive under BioProject ID PRJNA772269:

http://www.ncbi.nlm.nih.gov/bioproject/772269 for the immature samples and PRJNA639843: https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA639843 for the adult female samples.

d Data (including the ASV table andmetadata) and R code to reproduce all the analyses are available at: https://doi.org/10.5281/

zenodo.6984416.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The data for this study were collected between Jan 2015 and Jan 2019 from a population of wild geladas living in the Simien Moun-

tains National Park in northern Ethiopia (13o150N, 38o00’E). All research was conducted with permission of the Ethiopian Wildlife

and Conservation Authority (EWCA) following all laws and guidelines in Ethiopia. Samples were conducted with approval by the

Institutional Animal Care and Use Committees (IACUCs) of the University of Washington (protocol 4416-01), Arizona State University

(20-1754 R), Stony Brook University (773805) and University of Michigan (PRO-00008871). This research conformed to the American

Society of Primatologists/International Primatological Society Code of Best Practices for Field Primatology. Geladas live inmulti-level

societies, where several reproductive units (comprising a leader male, several adult females, their offspring, and occasionally 1-2

follower males) aggregate together during the day to forage and sleep together forming a ‘‘band’’ with a shared homerange.71 Since

Jan 2006, the Simien Mountains Gelada Research Project (SMGRP) has collected behavioral, demographic, and genetic data on a

near-daily basis from over 600 individuals living in 2 separate bands of the area. All gelada subjects were habituated to human ob-

servers on foot and were individually recognizable (using natural body and facial features). Data were derived from 89 infants and

juveniles (0-3 years of age) with known birth dates and 83 adult females living in 23 different reproductive units. The reproductive state

of each adult female wasmonitored during group visits and recorded as cycling (as indicated by the presence of sex skin swellings on

the neck, chest, and perineum), lactating (if she had a nursing infant), or pregnant (the date of conception was inferred by removing

183 days from the date of birth of subsequent offspring).76 Records of female reproductive history were used to assign maternal par-

ity status for each infant (first-time mother: primiparous or multi-time mother: multiparous) and to establish the date at which the

mother resumed cycling following the infant’s birth. We also used mother’s resumption of cycling to estimate the approximate

age at weaning for each infant. For 8 infants, age at weaning was assigned on the date of maternal death.

METHOD DETAILS

Fecal sample collection
Fecal samples (N=534; 307 females, 227male samples) from 89 immature geladas (i.e., infants and juveniles sampled pre-reproductive

maturity; female: N=51; male: N=38, mean±SD=6.00±5.69 samples per individual, range=1-18) were collected opportunistically from

2015-2016, and then regularly from2017 to 2018 using targeted protocols (Figure S1A). Samples were derived from individuals residing

in 17 different reproductive units (mean±SD=5.65±4.44 number of individuals sampled per unit, range=1-17). For a subset of immature

samples (N=398 samples from61 infants), we also collected amatched fecal sample from themother (N=398 samples from44mothers)

on the sameday or on the following day of the immature sample collection. Fecal samples of additional known adult females in all repro-

ductive states were also routinely collected (N=222 samples from 79 females) and were used to generate a random distribution of gut

microbiomecomposition similarity between immatures and females of the sameunit. Immediately upondefecation, approximately 1.5 g

of feces was collected in 3 ml of RNA later130 (observers wore sterile gloves during sample collection and avoided contact with soil to

minimize contaminationwith soilmicrobes). Sampleswere stored at room temperature for up to 2months, and subsequently shipped to

the University of Washington (UW). At UW, samples were stored at -80�C until the sequencing libraries were prepared.

Maternal dominance ranks
Female dominance rankswere established using ad libitum and focal observations of agonistic interactions between all adult females

belonging to the same unit with an Elo-rating procedure131 implemented in the R package EloRating.122 Agonistic interactions

included physical aggression (hit, bite), chase, threats (vocal threats, non-vocal gestures), approach-avoid interactions (displace-

ments) and submissive behaviors (fear bark, crouch, grimace). In geladas, agonistic interactions usually consist of a sequence of

several behaviors emitted and received by both parties. Since it can be difficult to establish the winner of each agonistic sequence,

we consider each behavior of a sequence as a separate event and assign the winner and loser based on the directionality of the

behavior. We obtained a daily Elo-score that we then averaged over the course of each month. Since Elo-scores can be sensitive

to differences in sampling effort, we then converted this monthly Elo-rank into a monthly proportional rank that controlled for female

group size (0=lowest-ranking females and 1= highest ranking female). In the analyses, we used maternal dominance rank during the

month of the infant’s birth since we expect microbially-mediated maternal effects to be the strongest in the postnatal period (during

nursing). However, we also investigated maternal rank during pregnancy and at the date of immature sample collection, which led to

similar results (not reported here).
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Environmental data
The study area is located at 3200 m above sea level and is characterized as an Afroalpine grassland ecosystem, consisting of grass-

land plateaus, scrublands, and Ericaceous forests.132 The climate in the Simien Mountains National Park exhibits marked inter- and

intra-annual fluctuation in rainfall and temperature and can be broadly divided into 3 distinct seasons: a cold-dry season (Oct to Jan),

a hot-dry season (Feb to May) and a cold-wet season (Jun to Sep).133 Fecal samples of immatures and adult females were collected

across the year, with roughly equal coverage across seasons (406 in cold-dry, 426 in cold-wet and 313 in hot-dry season). Daily cu-

mulative rainfall and minimum and maximum temperature are recorded on a near-daily basis by the SMGRP. Geladas are graminiv-

orous, with up to 90% of their diet composed of graminoids.72 They eat primarily graminoid leaves (i.e., grasses and sedges) all year

long, but increase their consumption of underground storage organs (rhizome, corms, roots) in the dry season, as above-ground gra-

minoid leaves become less abundant.72 A previous study established that the gut microbiome composition of adults shifts in

response to environmental variation, in particular with cumulative rainfall over the previous month, which is a good proxy of

diet.102 Thus, in all models we controlled for the total cumulative rainfall over the 30 days prior to the date of fecal sample collection

(as a proxy for grass availability) and the average minimum daily temperatures in the 30 days preceding the date of sample collection

(as a proxy of thermoregulatory constraints).

16S rRNA gene sequencing
We performed 16S rRNA gene amplicon sequencing on the immature and adult female fecal samples to establish gut microbial

composition. We first extracted microbial DNA using Qiagen’s PowerLyzer PowerSoil DNA Isolation kit (Qiagen #12855) following

standard protocols. We then amplified the hypervariable V4 region of the 16S rRNA gene using PCR primer set 515F and 806R

from The Human Microbiome Project and a dual-indexing approach.117 Details of the amplification protocol can be found in102

(see also: https://smack-lab.com/wp-content/uploads/2020/07/16S_library_prep_v1.pdf). The libraries were then pooled in roughly

equimolar amounts (each with their own unique indexing primer combination), spiked with 10% PhiX to increase library complexity,

and sequenced together on a single Illumina NovaSeq 6000 SP 250 bp paired-end sequence flowcell at the Northwest Genomics

Sequencing Core at the University of Washington, Seattle.

Data were processed using the Quantitative Insights Into Microbial Ecology 2 (QIIME2) platform118 using the demux command to

demultiplex raw reads and the DADA2 pipeline119 to generate amplicon sequence variants (ASVs) feature tables. Forward and

reverse reads were trimmed to 220 and 180 bases, respectively, to remove the low-quality portion of the sequences. After filtering,

trimming, merging, and chimera removal, we retained a total of 224,855,675 reads across the 534 immature fecal samples

(421,078±642,783 reads per sample, range=21,325-7,990,434) and 293,437,402 reads across 620 adult female fecal samples

(473,286 ±870,388 reads per sample, range= 20,109-10,735,575). ASVs were taxonomically assigned using the q2-feature classifier

in QIIME2 against version 132 of the SILVA database (updated December 2017)120 based on 100% similarity.

QUANTIFICATION AND STATISTICAL ANALYSIS

The count and taxonomy files generated by QIIME2 were imported into R version 3.5.2127 using the qiime2R package.134 We initially

obtained 29,686 ASVs (75% were singleton, i.e. observed in only one sample, and had very few reads) and subsequently filtered the

count table to retain only ASVs that had at least 500 reads total in the dataset to eliminate potentially artifactual sequences. Nine

immature samples were further removed at this step (one because it contained less than 20,000 reads following observation of rare-

faction curves and 8 because they were clear sequencing outliers). With these filtering criteria, 3,784 different ASVs were found

across 525 immature fecal samples (mean±SD number of ASVs per sample: 728±261, range: 65-1498), while the 620 adult female

samples contained 3,679 ASVs (mean±SD number of ASVs per sample: 829±248, range: 98-1761). Most ASVs could be taxonom-

ically assigned to the phylum (100%), class (99%), and order levels (99%), with assignments decreasing substantially at the family

(88%) and genus (63%) levels.

Alpha-diversity analyses
We calculated three complementary metrics of alpha diversity for each sample: the observed richness (the total number of unique

ASVs per sample), Shannon Index (taking into account both richness and evenness in abundance of ASVs), and Faith’s phylogenetic

diversity (a measure of the diversity of phylogenetic lineages within a sample) using the ‘‘phyloseq’’123 and ‘‘picante’’ package.124 To

assess which predictors affected immatures’ gut microbial alpha diversity, we used generalized additive mixed models (GAMMs)

with the ‘mgcv’ package in R.126 Such models allow fitting of a nonlinear relationship between the response variable and the fixed

effect (by adding a smooth term), such as between alpha diversity and immature age (Figure 1B). Fitted predictors included: immature

age (in months) at the date of fecal sample collection (continuous and modeled as a smooth term), immature sex, the parity status of

mother (primiparous versus multiparous), maternal dominance rank in the month of infant’s birth (continuous, between 0 and 1), cu-

mulative monthly rainfall over the previous 30 days (in mm), average monthly minimum temperature over the previous 30 days (in OC)

and the log-transformed sequencing depth (i.e., the number of reads per sample). The use of rarefaction (i.e., subsampling of the read

counts in each sample to a common sequencing depth) has been strongly discouraged on microbiome datasets because it discards

too much sequencing information and leads to a high rate of false positives,135 so we calculated alpha diversity on raw counts but

controlled for sequencing depth in our model. Graphical representations of alpha diversity metrics are nonetheless displayed using a

rarefied dataset at 20,000 reads. Individual identity and unit membership were included as random effects. Model residual checks
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were performed using the qq.gamViz and check.gamViz functions. Given that GAMMs cannot accommodate the test of the interac-

tion between a smooth (age) and fixed (e.g rank, parity) term, we ran these models including (i) all immature samples (0-3 years,

N=525), (ii) only on young infants (<12 months, relying largely on milk, N=184), and (iii) only on older juveniles (>18 months, relying

largely on plants, N=259) to test for early versus later life maternal attributes separately. Since the later life dataset is larger compared

to the early life dataset, we randomly subsetted 5000 times the later life dataset to 184 samples and report the 2.5%and 97.5%quan-

tiles of each covariate’s estimate to ensure that we have the same results in the full and subset datasets.

To quantitatively assess the age at which alpha diversity reaches a plateau (i.e., converges to adult-like pattern), we used quadratic

plateaumodels (formula: y� (a + b * x + c * I(x^2)) * (x <= -0.5 * b/c) + (a + I(-b^2/(4 * c))) * (x > -0.5 * b/c)) fitted using the nlsfit() function

of the easynls package136 and extracted the critical point of inflexion and r-squared of the optimizedmodel. 95%confidence intervals

(CI) for the age at inflexion were calculated by subsampling the alpha diversity metric with replacement in the dataset 1000 times.

Since it is not possible to control for covariates in those analyses (e.g., sequencing depth), we ran these models on a rarefied dataset

at 20,000 reads. We also run those quadratic plateau models when including both immature and adult samples to confirm the age at

convergence to adult-like values.

Beta-diversity analyses
Beta-diversity (between-sample dissimilarity in composition) among immature samples was computed as the Aitchison dis-

tance,137 which is simply the Euclidean distance between samples after centered log-ratio (clr) transformation of the raw counts

(a pseudo-count was added to the zeros using the imputation based on a Bayesian-multiplicative replacement from the cmul-

tRepl() function in the package zCompositions127). The clr transformation allows us to account for differences in sequencing depth

between samples and is a better practice than rarefaction of the counts.138 Principal components analysis (PCA) on the Aitchison

dissimilarity matrix (function ‘‘prcomp’’) was used to examine how immatures samples clustered by age. The first Principal compo-

nent (PC1) of the PCA was strongly predicted by age, thus we extracted the loading scores of each ASV on PC1 to determine

which specific ASVs have the highest influence on the clustering by age of samples (ASVs with the most negative scores are char-

acteristic of early life and ASVs with the most positive scores are characteristic of later life, see Figure S2D). A quadratic plateau

model was implemented to find the age at which Aitchison beta diversity reaches a plateau (using only immatures samples or both

immature and adult samples).

Marginal Permutational Multivariate Analysis of Variance (PERMANOVA) was then carried out on the Aitchison dissimilarity ma-

trix using the adonis2 function in the vegan package125 (with 10,000 permutations) to test for associations among gut microbial

beta-diversity and the variables of interest (immature age, sex, maternal parity, maternal rank, environmental variables, the log-

transformed sequencing depth, and unit membership). Individual identity was included as a blocking factor in the permutation

design to control for repeated sampling among individuals. To test for differences on the effect of maternal attributes in early

vs later life, we ran another PERMANOVA while including interactions between age and maternal parity and age and maternal

rank. We also replicated these PERMANOVA analyses using more classical measures of beta diversity (Bray-Curtis, unweighted

and weighted UniFrac dissimilarity) on a dataset normalized using Cumulative Sum Scaling (CSS) (a median-like quantile normal-

ization method which corrects for differences in sequencing depth) from the metagenomeSeq package.139,140 We found essen-

tially similar results (Data S1B).

Mother-infant comparison of gut microbiome composition
To assess the compositional maturation of the gut microbiome of immature geladas relative to the maternal gut microbiome across

age, we calculated (1) the number of shared ASVs across maternal and immature fecal-fecal communities, and (2) the beta diversity

dissimilarity (Bray-Curtis, unweighted and weighted UniFrac distances) between the matched infant-mother fecal samples collected

the same or next day. The dataset of immature and mother fecal samples was normalized using the CSS method to calculate these

metrics since sequencing depth affects the similarity between paired samples. Quadratic plateaumodels were implemented on the 4

metrics to identify the age at which infants converged toward the maternal (i.e., adult-like) gut microbial composition.

To assess which predictors and maternal attributes (rank, parity) affected the compositional similarity between mother-offspring

pairs, we usedGAMMs tomodel these 4metrics as a function of immature age (as a smooth term), immature sex, maternal parity and

maternal dominance rank, climatic variables (cumulative monthly rainfall and average monthly minimum temperature) and the log-

transformed sequencing depth (total number of reads in the maternal and immature samples), while individual identity and unit mem-

bership were included as random effects. Since we collected matched pairs over the first 3 years of an immature life, mothers could

either be lactating (usually when infants <12-15 months) or non-lactating (i.e., cycling or pregnant with the next infant, usually when

immatures>15-18 months). We did not add maternal reproductive state as a predictor in the model because it was too collinear with

immature age and because female reproductive state exerts a small and mostly non-significant effect on adult female gut micro-

biome composition in geladas.102 These GAMMs were run (i) on all mother-offspring pairs (0-3 years, N=398) and then separately

(ii) only on young infants (<12 months, N=136) or (iii) only on older juveniles (>18 months, N=201) to assess how maternal attributes

potentially affect differently the microbial similarity between mother-offspring dyads in early vs later life. We also ran the GAMM after

randomly subsetting 5000 times (iii) to 136 pairs to ensure that later life results were not due to a higher sample size in the later- vs

early-life dataset (we report the 2.5% and 97.5%quantiles of each covariate’s estimate). Note that we ran separate analyses for each

age group because it is not possible to fit an interaction between a smooth term (i.e., age) and covariates (i.e., maternal attributes) in

GAMMs.
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Individuality of the microbiomes in immatures
To capture the compositional divergence between immature samples, we calculated ameasure of ‘‘individuality’’ of themicrobiomes

among the 525 immature samples, as defined in,141 which corresponds to the beta diversity dissimilarity value between a sample and

the most similar sample (i.e., the minimum pairwise values from a beta diversity dissimilarity matrix, based on Bray-Curtis, un-

weighted and weighted UniFrac metrics). The higher the value, the more distinct the gut microbiome composition is from all other

immature samples in the cohort. This was calculated using the CSS normalized dataset.

Age-associated changes in microbial taxonomic composition
To identify themicrobial taxa that vary significantly in abundance as immatures age, we used a statistical framework that is commonly

used to analyze time series (and, in our case, longitudinal dataset). Autoregressive Integrated Moving Average (ARIMA) models al-

lowed us to model and test for chronological trends in temporal data.142 First, raw microbial counts were aggregated at the family or

genus level, normalized using a clr-transformation, and z-transformed per taxon (i.e., across samples) to correct for variation in library

size and unaccounted variance due to other covariates. Only microbial families or genera > 0.01% relative abundance across the

samples were selected for further analyses. Second, the counts were averaged across samples belonging to the same chronological

age and converted into z-ordered objects (using R package zoo128) and into time series objects. Formatted time series were then

analyzed using auto.arima (from the forecast R package129), using stepwise search and Akaike Information Criterion (AIC) to select

the best model. This algorithm scans a wide range of possible ARIMA models and selects the one with the smallest AIC. ARIMA

models that exhibited significant non-stationary trends (as opposed to unstructured ‘‘noise’’ fluctuations indistinguishable from sta-

tionary data) were selected following the criteria in142: (1) the difference order from stationary was higher than zero, and (2) at least one

autoregressive (AR) andmoving average (MA) coefficient was included in themodel. LOESS regressionswere then fitted to re-predict

the count of each taxon as a function of age.

We then grouped microbial taxa into clusters based on similarities in age-associated abundance trajectories. Pairwise distances

betweenmicrobial taxa trajectories (i.e., the predicted values of the LOESS regression) were computed using correlation coefficients

as a distance measure,143 and hierarchical clustering was performed using the complete method (using the function hclust from the

stats R package). The optimal number of clusters was determined using the Elbowmethod (i.e., choosing a number of clusters so that

adding another cluster does not highly improve the total within-cluster sum of squares).144 Results of hierarchical clustering were

visualized using the R package heatmap3145 to provide an overview of gut microbiome composition changes with age.

We used the Genomes OnLine Database (GOLD) (https://gold.jgi.doe.gov/)146 to broadly characterize the oxygen-tolerance of the

140 genera belonging to the 4 different clusters. Using a script (kindly provided by Dr. Laura Grieneisen), we extracted all organisms

(bacteria/archaea) for which oxygen requirement information was available in GOLD (N=12,211Operational Taxonomic Units, OTUs).

For each gelada genus, we investigated the oxygen requirement of the representative organisms of the same genus in GOLD (clas-

sified as obligate anaerobe, anaerobe, facultative anaerobe, microaerophilic and aerobe) and reached (usually easily) a consensus as

to themost frequent type of aerotolerance for the genus. For themissing genera, we looked at the original publications describing the

organism in NCBI taxonomy Browser (see Data S3B).

AGE-ASSOCIATED CHANGES IN MICROBIAL FUNCTIONAL COMPOSITION

To predict the microbial functional metagenomes of each sample from 16S rRNA data, we used Phylogenetic Investigation of Com-

munities by Reconstruction of Unobserved States 2 (PICRUSt2) v.2.1.3-b software77 with default options (picrust2_pipeline.py). We

then computed the relative abundance of Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologs (KOs) (agglomerated at

level 2, KO2, or 3, KO3, of the BRITE map) and of Enzyme Commission (EC) numbers for each sample. The age-related temporal

trajectory of each predicted KO pathway and EC was assessed using ARIMA models in a similar fashion than described above.

The only difference is that the raw metagenome counts were transformed into relative abundance (instead of clr transformed).

Only predicted microbial pathways > 0.01% relative abundance across the samples were included. Hierarchical clustering was

used to group the predicted pathways with similar aging trajectories.

16S metagenome prediction tools like PICRUSt2 are known to predict average gene profiles relatively well (they miss a large per-

centage of bacterial genes compared to shotgun sequencing, but the actual predicted genes are not particularly ‘‘wrong’’ either), but

perform poorly at predicting between-individual or sample differences in functional profiles.77,147 Here, we use those metagenome

inference solely to interpret the broad functions of the early life vs later microbial community (clusters) that have vastly different taxo-

nomic composition (and the early life microbiome functional profiles picked up a relevant biological signal). The relatively high NSTI

score of the immature samples indicates that gelada ASVs are not very close to reference bacterial genomes, which is likely because

we assigned functional categories at the level of ASVs, while other studies do this at the level of 97%OTUs, which removes 3% of the

variation across sequences and leads to closer matches to known databases. Note, however, that predicted microbial functional

profiles had higher accuracy in early life (when they resemble more to human-like newborn microbiota, NSTI=0.34±0.22) than later

in life (as microbiota become more specialized into grass digestion, NSTI=0.58±0.10).

Mother-infant gut microbiota similarity
To assess if maternal and offspring gut microbiome communities were more similar than expected by chance, we took a resampling

approach (with 5000 repetitions) to compare the number of shared ASVs and beta diversity dissimilarity metrics (Bray-Curtis,
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unweighted and weighted UniFrac calculated on CSS transformed counts) between (1) mother-offspring pairs and (2) pairs of fecal

samples from the same immature to another adult female. In this analysis, we only considered maternal and non-maternal samples

collected within 0-20 days of a given immature sample to be candidate samples for resampling (in order to avoid introducing envi-

ronmental variability in gut microbiota composition). Since mother-offspring pairs always shared the same social unit, we further

restricted the non-maternal samples to those involving females living in the same social group as the immature. Only 377 immature

samples were available for this analysis (i.e., with at least one random possible maternal and non-maternal sample). In total, we had

mean±SD=1.3±0.7 [range=1-5] possiblematernal samples and 4.2±2.3 [range=1-15] per infant sample. The number of days between

all possible infant-mother pairs was 3.5±6.1 days and 5.8±6.4 between and infant-non-maternal pairs.

The resampling procedure randomly selects one maternal and one non-maternal sample per immature sample at each iteration.

After we created this set, we use GAMMs to compare the distribution of metrics (number of shared ASVs or beta diversity dissimi-

larity, response variable) by fitting a variable (‘‘pair type’’) coding whether the value comes from a mother-offspring pair (1) or a non-

mother-immature pair (0), and controlling for immature age (as a smooth term), immature sex, the reproductive state (lactating versus

non-lactating) of the female sample of the pair (to avoid introducing systematic bias, e.g., if mothers are more often lactating than the

random females and if immatures are closer to lactating females), the difference in the number of days of collection between the sam-

ples involved in the pair, and the log-transformed total number of reads in both immature and female samples involved in the pair

(since some pairwisemetrics still exhibited some effect of sequencing depth). Immature and female identity were included as random

effects to account for repeated observations of the same individuals. We extracted the estimate of the ‘‘pair type’’ variable for the

model and re-ran the model on a different set of random maternal and non-maternal pairs (5000 times in total). We thus obtained

a distribution of 5000 estimates for the ‘‘pair type’’ variable. We report the exact p-value (calculated as the proportion of models

with positive estimates for the number of shared ASVs and the proportion of models with negative estimates for beta dissimilarity)

and the 95% confidence interval of the estimates of the ‘‘pair type’’ variable. Like above, these analyses were run including (i) all im-

matures (0-3 years, N=377 pairs), (ii) only young infants (<12 months, N=127), or (iii) only older juveniles (>18 months, N=193) to

compare the strength of the effect among the different age categories. Since we found stronger maternal effects in later life, we

needed to ensure that this was not a bias due to relying on a higher sample size of paired samples in later vs early life. Thus, during

the resampling approach we also ran a fourth test where we resampled the dataset (iii) to 127 observed and random pairs at each

iteration. To ensure the robustness of our biological signal (Data S2B), we re-reran the same exact resampling approach but only

including randommaternal and non-maternal pairs collected within 10 days of each other. We also re-ran the same exact resampling

approach at 20 days, but including all ASVs > 50 reads and all ASVs > 100 reads (our filtering criteria to keep only ASVs with > 500

reads might have removed important rare non-artifactual ASVs that would weaken the signal of similarity between mother-offspring

dyads) and found similar results.

We then examined the nature of the shared microbes between mother and offspring in early life (using mother-offspring pairs

matched within 0-1 day). For each ASV found in infant samples (<12 months, N=3,877 ASVs total), we computed its relative abun-

dance and prevalence (% samples containing it) in the infant dataset (<12months, N=184) and adult female dataset (N=620 samples).

We then simply plotted the relative abundance and prevalence of those ASVs according to the percentage of mother-offspring pairs

sharing this ASV (N=136 matched pairs within 0-1 day where infants <12 months, N=1,870 shared ASVs). We also computed those

metrics separately for primiparous (N=21) and multiparous (N=115) mother-offspring pairs.

Maternal attributes on offspring’s gut microbiota taxonomic and functional profiles
We examined how maternal attributes (dominance rank, parity) were associated with differences in offspring gut microbiome (1)

composition (at the family and genus levels) and (2) predicted function (KO2 and KO3 pathways and EC numbers) using GAMMs.

We modelled the relative abundance of each taxon and each functional pathway as a function of maternal parity and maternal domi-

nance rank in the month of infant’s birth, while controlling for immature age (as a smooth term), immature sex, climatic variables (cu-

mulative monthly rainfall and average monthly minimum temperature. For (1), the logarithm of the relative abundance of each taxon

was fit (adding a pseudo-count of 0.001% to include zero counts). In all models, individual identity and unit membership were

included as random effects. Only taxa that had an average relative abundance across samples > 0.01%were tested. Given the num-

ber of predicted metabolic pathways and the correction of p-values for multiple testings, only pathways that had an average relative

abundance across samples > 0.10% were tested. P-values were adjusted for multiple hypothesis testing by calculating the

Benjamini-Hochberg FDR multiple-test correction and taxa or predicted functional pathways with a corrected p-value < 0.05

were considered statistically significant. Since we predicted that maternal effects would be strongest in early life (when infants

are still nursing), we ran these analyses using (i) all samples (0-3 years, N=525, results not shown), or only focusing on (ii) young infants

(<12 months of age, N=184) and (iii) old immatures (>18 months, N=259).
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